double arrow

Канал передачи как четырехполюсник

Классификация каналов передачи и каналов электросвязи

Каналы передачи, их классификация и основные характеристики

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

Каналы передачи классифицируются:

- по виду передаваемых сигналов: аналоговые, дискретные и цифровые. Цифровые подразделяются на каналы передачи на основе импульсно-кодовой модуляции ( ИКМ), дифференциальной импульсно-кодовой модуляции (ДИКМ) и дельта - модуляции (ДМ);

- в зависимости от ширины полосы частот, в которой передается сигнал электросвязи различают канал тональной частоты (КТЧ), первичный широкополосный канал (ПШК), вторичный широкополосный канал(ВШК), третичный широкополосный канал (ТШК,четверичный широкополосный канал (ЧШК);

- в зависимости от скорости передачи сигналов электросвязи цифровые каналы передачи подразделяются на основной цифровой канал (ОЦК), первичный цифровой канал (ПЦК), вторичный цифровой канал (ВЦК), третичный цифровой канал (ТЦК), четверичный цифровой канал (ЧЦК);

- по виду среды распространения сигнала электросвязи различают проводные каналы передачи, организованные по воздушным линиям связи (ВЛС), кабельным линиям (КЛС) (симметричного и коаксиального кабеля) и волоконно-оптическим линиям (ВОЛС),каналы радиосвязи, организованные по радиорелейным и спутниковым линиям связи;

- по соответствию параметров каналов передачи установленным нормам различают типовой канал тональной частоты, типовой канал звукового вещания,типовой канал передачи сигналов изображения и звукового сопровождения телевидения, типовые широкополосные и цифровые каналы передачи.

Каналом электросвязи называется комплекс технических средств и среды распространения, обеспечивающий передачу сигналов электросвязи от преобразователя сообщений в первичный сигнал до преобразователя первичного сигнала в сообщение.

Дополнительные элементы классификации каналов электросвязи:

- по виду передаваемых первичных сигналов электросвязи или сообщений различают: телефонные каналы, каналы звукового вещания, телевизионные каналы, телеграфные каналы и каналы передачи данных;

- по способам организации двусторонней связи различают двухпроводный однополосный канал, двухпроводный двухполосный канал; четырехпроводный односторонний канал;

- по территориальному признаку различают международные каналы электросвязи, междугородные каналы электросвязи, магистральные, зоновые и местные каналы электросвязи.

Характеристики каналов передачи принято согласовывать с соответствующими параметрами первичных сигналов.

Канал может характеризоваться следующими параметрами:

- временем занятия TК,

- полосой пропускания ∆FК,

- динамическим диапазоном , дБ (3.1),

- емкостью (объемом) VК = DК* ∆FК* TК, дБ (3.2),

-защищенностью , дБ (3.3),

- пропускной способностью Iк = 3,32 ∆Fк lg(1 + ), бит/с (3.4).

Для неискаженной передачи необходимо выполнение следующих неравенств:

TК TС, ∆FК ∆FС, DК DС, VК VC

Последнее неравенство является абсолютным.

Канал передачи, как совокупность технических средств и среды распространения электрического сигнала, представляет каскадное соединение различных четырехполюсников, осуществляющих фильтрацию, преобразование, усиление и коррекцию сигналов. Следовательно, канал можно представить эквивалентным четырехполюсником, параметры и характеристики которого определяют качество передачи сигналов, рис. 3.1.

На рис. 3.1 приняты следующие обозначения: 1-1 и 2-2 - входные и выходные зажимы соответственно; Iвх (jw) и Iвых(jw) – комплексные входной и выходной токи; Uвх(jw) и Uвых(jw) – комплексные входное и выходное напряжения; Zвх(jw) и Zвых(jw) – комплексные входное и выходное сопротивления ( как правило, величины чисто активные и равные, т.е. Zвх = Rвх = Zвых = Rвых ); K(jw) = Uвых(jw) / Uвх(jw) =К (w ) × е jb(w) – комплексный коэффициент передачи по напряжению, К(w) – модуль коэффициента передачи и b(w) – фазовый сдвиг между входным и выходными сигналами; если берется отношение выходного тока к входному, то говорят о коэффициенте передачи по току; uвх(t), uвых(t) – мгновенные значения напряжения входного и выходного сигналов , рвч и рвых – входной и выходной уровни напряжения или мощности сигналов.

Каналы передачи работают между реальными нагрузками Zн1 (jw) и Zн2(jw), подключаемыми соответственно к зажимам 1-1 и 2-2.

Свойства каналов и их соответствия требованиям к качеству передачи сообщений определяется рядом параметров и характеристик.

Первым и одним из основных параметров каналов является остаточное затуханиеАr , под которым понимается рабочее затухание канала, измеренное или рассчитанное в условиях подключения к зажимам 1-1 и 2-2 (рис.3.1) активных сопротивлений, соответствующих номинальным значениям Rвх и Rвых соответственно. Входные и выходные сопротивления отдельных устройств канала передачи достаточно хорошо согласуются между собой. При этом условии рабочее затухание канала можно считать равным сумме характеристических (собственных) затуханий отдельных устройств, не учитывая отражений. Тогда остаточное затухание канала может быть определено по формуле

, ( 3.1 )

где рвх и рвыч – уровни на входе и выходе канала (см. рис. 1); Ar – затухание i-го и Sj - усиление j-го четырехполюсников, составляющих канал передачи.

Это означает, что остаточное затухание (ОЗ) канала представляет собой алгебраическую сумму затуханий и усилений и удобна при расчетах Аr, когда известны затухания усилительных участков и усиления усилителей. ОЗ измеряется на определенной для каждого канала измерительной частоте.В процессе эксплуатации ОЗ канала не остается величиной постоянной, а отклоняется от номинального под воздействием различных дестабилизирующих факторов. Эти изменения ОЗ называются нестабильностью, которая оценивается по максимальному и среднеквадратическому значениям отклонений от номинального или величиной их дисперсии.Остаточное затухание канала увязывается с его полосой пропускания. Полоса частот канала, в пределах которой остаточное затухание отличается от номинального не более, чем на некоторую величину DAr, называется эффективно передаваемой полосой частот(ЭППЧ). В пределах ЭППЧ нормируются допустимые отклонения ОЗ DAr от номинального значения. Наиболее распространенным способом нормирования является использование “шаблонов” допустимых отклонений ОЗ Примерный вид такого шаблона приведен на рис.3.2.

1

затухания канала передачи

На рис.3.2 приняты следующие обозначения f0 – частота, на которой определяется номинальное значение ОЗ; fн , fв – нижняя и верхняя граничные частоты ЭППЧ; 1,2 – границы допустимых отклонений ОЗ; 3 – вид измеренной частотной характеристики ОЗ. Отклонения ОЗ от номинального определяются по формуле

, (3. 2 ) где f - текущая частота , f0частота определения номинального значения ОЗ.

С понятием ЭППЧ тесно связана амплитудно-частотная характеристика- АЧХ (или просто частотная характеристика) канала, под которой понимается зависимость остаточного затухания от частоты Аr = jч (f) при постоянном уровне на входе канала, т.е. рвх = const. Эта характеристика оценивает амплитудно-частотные (просто частотные) искажения, вносимые каналом за счет зависимости его ОЗ от частоты. Допустимые искажения определяются шаблоном отклонений ОЗ в пределах ЭППЧ. Примерный вид АЧХ канала показан на рис. 3.3.

Для передачи ряда сигналов электросвязи важной является фазо-частотная характреристика – ФЧХ ( просто фазовая характеристика) канала, под которой понимается зависимость фазового сдвига между выходным и входным сигналами от частоты, т.е. b = jф(f). Общий вид фазовой характеристики канала приведен на рис. 3.4 (линия 1).

В средней части ЭППЧ указанная характерстика близка к линейной, а на ее границах наблюдается заметная нелинейность, обусловленная фильтрами, входящими в состав канала передачи. В связи с тем, что непосредственное измерение фазового сдвига, вносимого каналом, затруднительно для оценки фазовых искажений рассматривают частотную характеристику группового времени прохождения– ГВП (или замедления – ГВЗ)

t (w ) = db (w) / dw, ( 3.3 ) где b (w) – фазо-частотная характеристика. Примерный вид частотной характеристики ГВП показан на рис.3.4 (линия 2).

Частотные характеристики остаточного затухания, фазового сдвига или группового времени прохождения определяют линейные искажения, вносимые каналами передачи при прохождении по ним сигналов электросвязи.

Зависимость мощности, напряжения, тока или их уровней на выходе канала от мощности, напряжения, тока или их уровней на входе канала называется амплитудной характеристикойАХ. Под АХ канала понимается также зависимость остаточного затухания канала от уровня сигнала на его входе, т.е. Ar = jа (рвх), измеренная при некоторой обусловленной постоянной частоте измерительного сигнала на входе канала, т.е. fизм = const.

Амплитудная характеристика канала может быть представлена различными зависимостями, рис. 3.5: Uвых = jн (Uвх) ( рис.3.5а, линии 1 и 2), Аr = jА (рвх) (рис. 3.5б, линия 1), рвх = jр ( рвых) (рис. 3.5б, линии 2 и 3), где приняты следующие обозначения: Uвх, Uвых – напряжения сигнала на входе и выходе канала соответственно; рвх,, рвых – уровни (напряжения, мощности) сигналов на входе и выходе канала соответственно; Ar – остаточное затухание канала передачи.

Из рассмотрения графиков, представленных на рис. 3.5 видно, что АХ имеет три участка: 1) нелинейный участок при малых значения напряжения или уровней сигнала на входе канала; нелинейность АХ при этом объясняется соизмеримостью напряжения или уровня сигнала с шумами самого канала; 2) линейный участок при значениях напряжения или уровня входного сигнала, для которого характерна прямая пропорциональная

 
 


зависимость между напряжением (уровнем) сигнала на входе канала и напряжением (уровнем) сигнала на выходе канала; 3) участок с существенной нелинейностью при значениях входного напряжения (уровня ) сигнала выше максимальных Uмакс (рмакс), для которых характерно появление нелинейных искажений. Если угол наклона прямой, соответствующей линейному участку АХ, равен 450, то напряжение (уровень) сигнала на выходе канала равны напряжению (уровню) на его входе; если угол наклона меньше 450, то в канале имеет место затухание, а если угол наклона больше 450, то в канале имеет место затухание. Если Ar >0, то канал вносит затухание (ослабление), если Ar< 0, то канал передачи вносит остаточное усиление.

Незначительная нелинейность АХ при малых значениях входного напряжения или уровня сигнала не влияет на качество передачи и ею можно пренебречь. Нелинейность АХ при значительных значениях напряжения или уровня входного сигнала, выходящих за пределы линейного участка АХ, характеризуется появлением нелинейных искажений, которые проявляются в возникновении гармоник или комбинационных частот входного сигнала. По АХ можно лишь приблизительно оценить величину нелинейных искажений. Более точно величина нелинейных искажений в каналах оценивается коэффициентом нелинейных искажений или затуханием нелинейности

или , ( 3.4 ) где U – действующее значение напряжения первой (основной) гармоники измерительного сигнала; U, U и т.д.– действующие значения напряжений второй, третьей и т.д. гармоник сигнала, возникших из-за нелинейности АХ канала передачи.

Кроме того, в технике многоканальных телекоммуникационных систем передачи широко пользуются понятием затухания нелинейности по гармоникам

Аnг = 20 lg (U/ Unг ) = р - рnг , n= 2, 3 …, ( 3.5 ) где р – абсолютный уровень первой гармоники измерительного сигнала, рnг – абсолютный уровень n – ой гармоники, обусловленной нелинейностью АХ канала.

Цифровые каналы характеризуются скоростью передачи, а качество передачи сигналов оценивается коэффициентом ошибки, под которым понимается отношение числа элементов цифрового сигнала, принятых с ошибками к общему числу элементов сигнала, переданных в течение времени измерения

Кош = Nош / N = Nош / ВТ , ( 3.6 ) где Nош – число ошибочно принятых элементов; N – общее число переданных элементов; В – скорость передачи в бодах; Т – время измерения (наблюдения).

Телекоммуникационные системы должны быть построены таким образом, чтобы каналы обладали определенной универсальностью и были бы пригодны для передачи различного вида сообщений. Таким свойствами обладают типовые каналы, параметры и характеристики которых нормированы. Типовые каналы могут быть простыми, т.е. не проходящим через оборудование транзита,и составными, т.е. проходящими через оборудование транзита.


Сейчас читают про: