double arrow

Общие принципы работы ЭВМ



Многопроцессорные по принципу взаимодействия с памятью

Симметричное мультипроцессирование (англ. Symmetric Multiprocessing, или SMP) это архитектура многопроцессорных компьютеров, в которой два или более одинаковых процессоров (или ядер одного процессора) подключаются к общей памяти.

4. По особенностям набора регистров, формата команд и данных различают:

CISC (англ. сomplex instruction set computing, или англ. complex instruction set computer — компьютер с полным набором команд) — концепция проектирования процессоров, которая характеризуется следующим набором свойств:

§ нефиксированное значение длины команды;

§ арифметические действия кодируются в одной команде;

§ небольшое число регистров, каждый из которых выполняет строго определённую функцию.

Типичными представителями являются процессоры на основе x86-команд (исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom, которые являются гибридными) и процессоры Motorola MC680x0.

RISC (англ. Restricted (reduced) instruction set computer — компьютер с сокращённым набором команд) — архитектура процессора, в которой быстродействие увеличивается за счёт упрощения инструкций, чтобы их декодирование было более простым, а время выполнения — короче. Первые RISC-процессоры даже не имели инструкций умножения и деления. Это также облегчает повышение тактовой частоты и делает более эффективной суперскалярность (распараллеливание инструкций между несколькими исполнительными блоками).




VLIW (англ. very long instruction word — «очень длинная машинная команда») — архитектура процессоров с несколькими вычислительными устройствами.

Характеризуется тем, что одна инструкция процессора содержит несколько операций, которые должны выполняться параллельно. Фактически это «видимое программисту» микропрограммное управление, когда машинный код представляет собой лишь немного свернутый микрокод для непосредственного управления аппаратурой.

1. Принцип двоичного кодирования. Машина должна работать не в десятичной системе счисления (как механические арифмометры), а в двоичной. Это означает, что как программа, так и данные должны быть записаны в кодах двоичной системы, где каждое число или символ представляется определенной комбинацией нулей и единиц;

2. Принцип программного управления. Это означает, что программа должна состоять из набора команд, которые выполняются процессором автоматически в определенной последовательности;

3. Принцип однородности памяти. Как программы, так и данные хранятся в одних и тех же ячейках памяти. ЭВМ не различает, что хранится в конкретной ячейке - число, текст или команда. С командами можно производить такие же действия, что и с данными;

4. Принцип иерархии памяти. Чтобы работать достаточно быстро, память компьютера должна быть организована по иерархическому принципу, то есть состоять по крайней мере из двух частей: быстрой памяти небольшой емкости (оперативной) и более емкой (а потому и более медленной) внешней;



5. Принцип адресности. Структурно основная память машины должна состоять из пронумерованных ячеек, причем процессору в произвольный момент времени должна быть доступна любая ячейка.

Любая ЭВМ состоит из следующих основных устройств: процессор, память (внутренняя и внешняя) и устройства ввода и вывода информации.

1) Процессорявляется главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления УУ.

Каждый процессор способен выполнять вполне определенный набор универсальных инструкций, называемых чаще всего машинными командами. Каков именно этот набор, определяется устройством конкретного процессора, но он не очень велик и в основном аналогичен для различных процессоров. Работа ЭВМ состоит в выполнении последовательности таких команд, подготовленных в виде программы. Процессор способен организовать считывание очередной команды, ее анализ и выполнение, а также при необходимости принять данные или отправить результаты их обработки на требуемое устройство. Выбрать, какую инструкцию программы исполнять следующей, также должен сам процессор, причем результат этого выбора часто может зависеть от обрабатываемой в данный момент информации.

2) Память.Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Внутренняя и внешняя память

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий (раньше использовались магнитные устройства на основе ферритовых сердечников – лишнее свидетельство тому, что конкретная физические принципы значения не имеют). Наиболее существенная часть внутренней памяти называется ОЗУ - оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверное, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется. В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти, которые при первом знакомстве можно пропустить. Здесь упомянем только о постоянном запоминающем устройстве (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его даже не извлекая из компьютерной платы.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Внешняя память позволяет сохранить огромные объемы информации с целью последующего использования.

Современные программные системы способны объединять внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.



Сейчас читают про: