Холодильного агента перед дросселированием

Схема и цикл с перегревом пара и переохлаждением жидкого

Для увеличения холодопроизводительности действительных холодильных машин поддерживается режим, при котором в испарителе выкипает весь жидкий холодильный агент. Для гарантированного исключения попадания жидкости в компрессор всегда пар хладагента перед всасыванием перегревается. В холодильных установках предприятий массового питания для сжатия пара как правило применяются поршневые компрессоры. Попадание даже небольшого количества жидкости в полость цилиндров может вызвать гидравлический удар и аварию всей холодильной машины, так как жидкость практически не сжимаема. Поэтому «сухой ход» – это обязательное условие работы компрессора холодильной машины. Кроме того с целью снижения необратимых потерь при дросселировании в реальных холодильных машинах жидкий хладагент перед дроссельным устройством охлаждается. Это повышает удельную холодопроизводительность цикла и холодильной установки в целом. Перегрев пара перед всасыванием в компрессор осуществляется или во всасывающем трубопроводе, или в самом испарителе, или в специальном аппарате – регенеративном теплообменнике. Охлажение жидкого холодильного агента паред дросселированием может происходить или в специальном переохладителе, или в самом конденсаторе, или также в регенеративном теплообменнике. В малых хладоновых холодильных машиных торговли и общественного питания как правило используется регенеративный теплообменник. Схема и цикл холодильной машины с регенеративным теплообменником показаны на рисунке 5.4.

Рисунок 5.4 – Схема и цикл холодильной машины с регенеративным теплообменником.

После испарителя насыщенный пар холодильного агента состояния т.1′ направляется в регенеративный теплообменник, где перегревается в процессе 1′ - 1″ за счет теплообмена с теплым жидким холодильным агентом, идущим из конденсатора. Перегретый пар всасывается компрессором, в котором адиабатически сжимается в процессе 1″ - 2″ от давления кипения Ро до давления конденсации Рк. При этом его температура повышается. Сжатый горячий пар подается в конденсатор. где сначала охлаждается до температуры насыщения, а затем конденсируется в общем процессе 2″ - 3′. Образовавшаяся в процессе конденсации жидкость поступает в ренегеративный теплообменник, в котором охлаждается в процессе 3′ - 3″ за счет теплообмена с холодным паром, выходящим из испарителя. Охлажденный жидкий хладагент дросселируется в процессе 3″ - 4″ от давления конденсации Рк до давления кипения Ро. После дросселирования холодильный агент поступает в испаритель, где жидкость кипит в процессе 4″ - 1′, отводя теплоту от охлаждаемой среды. Пар, образовавшийся при кипении, перегревается в регенеративном теплообменнике, всасывается компрессором и цикл повторяется вновь.

Удельная холодопроизводительность цикла:

qо3 = h1′ - h4″.

Удельная работа цикла

lц3 = h2″ - h1″.

Массовый расход холодильного агента

где - Qо – полная тепловая нагрузка испарителя (полная холодопроизводительность холодильной машины).

Объемный расход хладагента

Vа = Gа∙х∙νвс,

где νвс – удельный объем всасываемого пара холодильного агента, м3/кг.

Теоретическая потребляемая мощность компрессором

Nт = lц3∙Gа.

Холодильный коэффициент цикла

Степень перегрева пара перед всасыванием в компрессор и охлаждения жидкости перед дросселированием зависит от вида рабочего вещества и конкретных условий работы холодильной машины. Так например для аммиачных машин при среднетемпературном режиме перегрев принимается Δtвс = (5 – 10)°С, для хладоновых Δtвс = (10 – 30)°С. В аммиачных холодильных машинах регенеративный теплообменник не применяется из-за его низкой эффективности. Поэтому в таких машинах имеет место незначительное охлаждение жидкости перед дросселированием Δtохл = (3 –5)°С. В хладоновых особенно малых машинах регенеративный теплообменник обязателен не только для охлаждения, но и для возврата в компрессор масла высокой концентрации (выпаривания жидкого хладагента из маслохладонового раствора). В этом случае состояние жидкого холодильного агента перед дросселированием определяется из теплового баланса регенеративного теплообменника, который имеет вид:

qпод = qотв,

где qпод – количество подведенной теплоты от теплого жидкого холодильного агента, Дж/кг;

qпод = h3' - h3",

где qотв – количество отведенной теплоты от холодного пара после испарителя, Дж/кг;

qотв = h1" – h1'.

h3' – h3'' = h1'' – h1'

Отсюда находится энтальпия жидкого хладагента после регенеративного теплообменника h3":

h3" = h3' – (h1" – h1').


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: