Распространенное мнение о том, что кэш обязательно может кэшировать всю память (хранить в себе копии любого участка) в действительности неверно. Размер кэшируемой области определяет разрядность поля TAG.
Например, если кэш прямого отображения размером 1Мб должен кэшировать память объемом 4Гб, то размер TAG должен быть не менее 12 бит.
Поскольку память делится на области равные размеру страницы кэша, а поле TAG идентифицирует каждую такую область, значений должно хватить на все блоки.
В общем случае если размер поля tag равен N бит, а размер страницы кэша равен S байт, то кэшироваться могут первые S*(2^N) байт памяти. Это ограничение применимо к кэш-памяти прямого отображения и к наборно-ассоциативному кэшу. Для полностью ассоциативного кэша работает другая формула – размер кэшируемой области = 2^N, где N – разрядность поля TAG.
В случае наборно-ассоциативного кэша, размер страницы определяется путем деления размера кэша, на количество страниц – скажем, если кэш размером 256Кб является 4-ассоциативным, то размер его страницы – 256К/4=64К.
К сожалению, размер tag не всегда позволяет кэшировать всю память. Из MSR-регистра (см. ниже) по адресу 0x11E для P6 можно узнать размер кэшируемой области для L2.
По дискам
1 устройство жёсткого диска
2. Контроль и управление
3. Особенности хранения информации на ЖД
4. Треки и сектора
5. Магнитные головки
6 Парковка магнитных головок
7. Кэш ЖД
8. Форматирование ЖД
Технологии записи данных
Принцип работы жестких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.
В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них, изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).
[править]
Метод параллельной записи
На данный момент это самая распространенная технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей — доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.
Максимально достижимая при использовании данного метода плотность записи оценивается 150 Гбит/дюйм² (23Гбит/см²). В ближайшем будущем ожидается постепенное вытеснение данного метода методом перпендикулярной записи.
[править]
Метод перпендикулярной записи
Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов — 100—150 Гбит/дюйм² (15-23 Гбит/см²), в дальнейшем планируется довести плотность до 400—500 Гбит/дюйм² (60—75 Гбит/см²).
Жесткие диски с перпендикулярной записью доступны на рынке с 2005 года.
[править]
Метод тепловой магнитной записи
Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording — HAMR) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2008 год), есть лишь экспериментальные образцы, но их плотность уже превышает 1Тбит/дюйм² (150Гбит/см²). Разработка HAMR-технoлогий ведется уже довольно давнo, однакo эксперты до сих пор расходятся в оценках максимальной плoтности записи. Так, компания Hitachi называет предел в 15 − 20 Тбит/дюйм², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 50 Тбит/дюйм²[5]. Широкогo распространения данной технoлогии следует oжидать после 2010 года.
Жёсткие диски
Жесткий магнитный диск (он же винчестер) состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате – вся управляющая электроника, за исключением предусилителя (предварительного усилителя), размещенного внутри гермоблока в непосредственной близости от считывающих головок.
В гермоблоке установлен шпиндель с одним или несколькими дисками. Диски изготовлены из алюминия (иногда – из керамики или стекла) и покрыты тонким слоем окиси хрома. В настоящее время объем информации, хранимой на одном диске, может достигать 100 Гбайт.
Сбоку шпинделя находится поворотный позиционер (подобен башенному крану со стрелой-коромыслом). С одной стороны коромысла расположены обращенные к дискам легкие магнитные головки, а с другой – короткий хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков.
Под дисками расположен двигатель, который вращает их с большой скоростью. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается специальным фильтром. Для выравнивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой. В ряде моделей окно закрывается воздухопроницаемым фильтром.
Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение.
При вращении дисков аэродинамическая сила поддерживает головки на небольшом расстоянии от поверхности дисков. Головки никогда не соприкасаются с той зоной поверхности диска, где записаны данные. На хвостовике позиционера обычно расположена так называемая магнитная защелка – маленький постоянный магнит, который при крайнем внутреннем положении головок притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В посадочной зоне дисков информация не записывается, поэтому прямой контакт с нею не опасен.
Практически все современные жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний год емкость дисков растет быстрыми темпами за счет повышения плотности записи информации.Рассмотрим компоненты Жёсткого диска.
Основные параметры жесткого диска:
- Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
- Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
- Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
- Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
- Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
Пластины