Правила образования когерентных производных единиц СИ

Примечания

1. Кроме термодинамической температуры (обозначение T), допускается применять также температуру Цельсия (обозначение t), определяемую выражением t=T–T0, где T0 = 273,15 К. Термодинамическую температуру выражают в кельвинах, температуру Цельсия – в градусах Цельсия. По размеру градус Цельсия равен кельвину. Градус Цельсия – это специальное наименование, используемое в данном случае вместо наименования «кельвин».

2. Интервал или разность термодинамических температур выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.

3. Обозначение Международной практической температуры в Международной температурной шкале 1990 г., если ее необходимо отличить от термодинамической температуры, образуют путем добавлении к обозначению термодинамической температуры индекса «90» (например, T90 или t90).

Международная система единиц включает в себя две дополнительные единицы – для измерения плоского и телесного углов.

Единица плоского угла – радиан (рад, rad) – угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17'48".

Единица телесного угла – стерадиан (ср, sr) – телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Дополнительные единицы использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин. Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, так как большинство важных для практики значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами (2π, π/2 и пр.).

Согласно международному стандарту ИСО размерность обозначается символом dim, от латинского «dimension» – размерность.

Размерность производной физической величины выражается через размерность основных величин с помощью степенного одночлена:

dim X = Lα·Mβ·Tγ·Iδ·θε·Jζ·Nη…,

где L, M, T, I, θ, J, N – размерности соответствующих физических величин; α, β, γ, ε, ζ, η – показатели степени, в которую эти размерности возведены.

Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемая как логарифм относительно величины (например, логарифм отношения мощностей или напряжения).

Производные единицы СИ образуют по правилам образования когерентных производных единиц СИ.

Когерентные производные единицы (далее – производные единицы) Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

Пример: Единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся материальной точки V = S / T, где V – скорость; S – длина пройденного пути; T – время движения материальной точки. Подстановка обозначений величин вместо их единиц СИ дает [V] = [S] / [T] = 1 m/s.

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся материальной точки, при которой эта точка за время 1 s перемещается на расстояние 1 m.

В таблице 2 приведены примеры некоторых производных физических величин, их размерности и единицы измерения.

Таблица 2 – Примеры производных физических величин

Физическая величина Размер–ность Единица измерения Сокращенное обозначение ед. изм.
русское международное
         
Площадь L2 квадратный метр м2 m2
Объем, вместимость L3 кубический метр м3 m3
Скорость LT –1 метр в секунду м/с m/s
Ускорение LT –2 метр на секунду в квадрате м/с2 m/s2
Волновое число L–1 метр в минус первой степени м–1 m–1

Продолжение таблицы 2.

         
Плотность L–3M килограмм на кубический метр кг/м3 kg/m3
Удельный объем L3M –1 кубический метр на килограмм м3/кг m3/kg
Плотность электрического тока L–2I ампер на квадратный метр А/м2 A/m2
Напряженность магнитного поля L–1I ампер на метр А/м A/m
Молярная концентрация компонента L–3N моль на кубический метр моль/м3 mol/m3
Яркость L–2J кандела на квадратный метр кд/м2 cd/m2

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: