Семинары 5, 6. Распределение Максвелла

О т в е т ы

4.1. а) 4 %

б)

4.2. 1.4×

4.3. а) .

б)

г)

4.4. а)

б)

г)

В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной скоростью, отвечает распределение Максвелла. Оно является частным случаем распределения Гиббса, когда энергия частицы есть только ее кинетическая энергия: . В декартовой системе координат, в пространстве скоростей,,, распределение Максвелла имеет следующий вид:

, (5.1)

где - масса частицы идеального газа. Постоянная находится из условия нормировки:

(5.2)

При решении некоторых задач удобно пользоваться распределением Максвелла по отдельным компонентам скоростей:

(5.3)

– это вероятность того, что значение компоненты скорости частицы лежит в интервале от до . Аналогичные выражения справедливы для вероятностей и . Примерный вид плотности вероятности приведен на рис.5.1.

В сферической системе координат распределение Максвелла, в случае изотропного пространства, имеет следующий вид:

. (5.4)

Оно отвечает на вопрос какова вероятность того, что абсолютная скорость частицы лежит в интервале от до , а также на вопрос, сколько частиц из имеют абсолютную скорость в заданном интервале:

. (5.5)

Следует отметить, что и – очень большие числа, но . Соответственно, доля частиц, имеющих абсолютную скорость в интервале от до , равна

. (5.6)

На рис.5.2 приведен примерный вид плотностей вероятности распределения Максвелла для различных температур. Здесь же

 
 

показаны наивероятнейшие скорости каждого распределения. Как видно, они растут с увеличением температуры. Их значения можно получить, решая задачу на экстремум функции плотности вероятности:

. (5.7)

Приведенные формулы распределения Максвелла позволяют находить средние значения различных микроскопических параметров, зависящих от скорости или ее отдельных компонент, в соответствии с общей процедурой усреднения. Если параметр зависит от абсолютной скорости - , то его среднее значение найдется вычислением интеграла

 
 

Среднее значение параметра, зависящего от одной компоненты скорости, вычисляется по формуле

. (5.9)

В случае, когда параметр зависит от двух или трех компонент скорости, для его усреднения следует использовать распределение (5.1).

Характерными скоростями распределения Максвелла принято называть три величины:

1. Наивероятнейшая скорость - .

2. Средняя скорость - .

3. Средняя квадратичная скорость - .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: