Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Принцип работы поршневого двигателя




Классификация авиационных поршневых двигателей.

Авиационные поршневые двигатели относятся к двигателям внутреннего сгорания. Это означает, что топливо в ПД сгорает внутри самого двигателя. Камера сгорания ПД ограничена внутренней поверхностью цилиндра и поршнем.

Существующие авиационные поршневые двигатели могут быть классифицированы по различным признакам:

1) В зависимости от применяемого топлива.

На летательных аппаратах возможно применении поршневых двигателей легкого и тяжелого топлива.

К двигателям легкого топлива относятся авиационные ПД, использующие в качестве топлива бензин. Это 4-хтактные двигатели, принцип работы которых будет рассмотрен ниже.

Двигатели тяжелого топлива работают на дизельном топливе (солярке). Эти двигатели называются «дизелями». Дизели не нашли широкого применения в качестве двигателей ЛА. Их главный недостаток: малая высотность и неудовлетворительные пусковые свойства. Ограниченно дизели конструкции А. Д. Чаромского М-40 и АЧ-30Б применялись на самолетах времен Великой отечественной войны Ер-2 и Пе-8.

В настоящее время все применяемые на ЛА ПД являются двигателями легкого топлива, т.е. в качестве топлива используют бензин.

2) По способу смесеобразования.

Различают двигатели с внешним смесеобразованием (карбюраторные) и с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).

У двигателей с внешним смесеобразованием подготовка топливовоздушной смеси (ТВС) осуществляется в специальном агрегате — карбюраторе. Это обеспечивает качественную подготовку смеси, следовательно, ее полное сгорание и снижение потерь топлива. Недостатком карбюраторов является то что, они рассчитаны на работу при положительных перегрузках. Поэтому карбюраторные двигатели применяются на неманевренных самолетах (пассажирских, транспортных…) и вертолетах. Карбюраторным, например, является двигатель АШ-62ИР, устанавливаемый на самолете Ан-2.

Двигатели с непосредственным впрыском топлива в цилиндры широко применялись на самолетах-истребителях времен 2-й мировой войны. В настоящее время используются на спортивных самолетах.

3) В зависимости от расположения цилиндров.

Различают двигатели с рядным расположением цилиндров и (цилиндры располагаются в один и более рядов, один за другим) и звездообразные (цилиндры расположены по окружности).

У двигателей с рядным расположением цилиндры расположены компактно, что облегчает размещение такого двигателя на самолете. Кроме того, цилиндры можно расположить в 2, 3 или 4 ряда, что позволит получить большую мощность при незначительном увеличении габаритов двигателя. Недостатком рядного расположения цилиндров является сложность их охлаждения. Внешний вид 2-х рядного поршневого двигателя АМ-34 приведен на рис. 1-4.




У звездообразных двигателей цилиндры расположены по окружности в форме звезды. Причем, количество рядов (звезд) у одного двигателя может быть 1, 2 или 4. Недостатком такого расположения цилиндров является большие поперечные размеры двигателя, и, следовательно, и сложность компоновки на летательном аппарате.

Внешний вид однорядного звездообразного поршневого двигателя М-14 приведен на рис. 1-3.

4) В зависимости от способа охлаждения.

Различают двигатели жидкостного и воздушного охлаждения.

У двигателей жидкостного охлаждения цилиндры снаружи омываются жидкостью. Затем нагретая жидкость, проходя через специальный теплообменник (радиатор) отдает тепло атмосферному воздуху и снова возвращается к цилиндрам. Такие двигатели выполнены, как правило, с рядным расположением цилиндров, т.е. компактны и удобны для размещения на самолете. Однако они сложны конструктивно, так как на них должна быть специальная система охлаждения, обеспечивающая циркуляцию жидкости. Двигатели жидкостного охлаждения были распространены на самолетах времен 2-й мировой войны. Например, так были изготовлены все двигатели А.А.Микулина: М-34 (рис.1-2), М-35А, М-38Ф, АМ-42.

У двигателей воздушного охлаждения цилиндры охлаждаются при обдуве их воздухом. Цилиндры в таких двигателях расположены в струе воздуха, идущей от воздушного винта, и для улучшения охлаждения имеют оребрение. Так как необходимо обеспечить охлаждение всех цилиндров, каждый из них должен находиться в воздушной струе. Поэтому цилиндры располагаются по окружности (звездообразно), что приводит к значительному увеличению поперечных размеров двигателя.



Наибольшее распространение в настоящее время получили звездообразные двигатели с воздушным охлаждением. К ним относятся двигатели М-14 (рис.1-3) и АШ-62ИР.

Рис.1-2. Авиационный двигатель АМ-34

Рис.1-3. Авиационный двигатель М-14

5) В зависимости от характера изменения мощности при изменении высоты полета.

Авиационные ПД делятся на высотные и невысотные.

Высотные двигатели при увеличении высоты сохраняет свою мощность до достижения какой-то определенной высоты, называемой расчетной (Hрасч). При дальнейшем увеличении высоты (если Н>Hрасч) мощность у высотных двигателей снижается.

У невысотных двигателей мощность с увеличением высоты только снижается. На пассажирские и транспортные самолеты устанавливаются высотные двигатели. Например, высотным является двигатель АШ-62ИР.

Поршневой двигатель работает на принципе преобразования тепловой энергии в механическую. Рассмотрим, как практически осуществляется этот принцип (рис. 1-4). Через трубопровод 4 подается топливовоздушная смесь (ТВС) по стрелке "А". К моменту подачи топлива в камеру сгорания 6 открывается впускной клапан 5. После заполнения камеры сгорания впускной клапан закрывается и к свече 8 подается высокое электрическое напряжение. В свече возникает электрическая искра, которая поджигает ТВС. Топливовоздушная смесь, быстро сгорая, расширяется, в камере сгорания возникает значительное давление сгоревших газов. Это давление, действуя на поршень 3, заставляет его двигаться вниз в цилиндре 2 и через шатун 9 движение передается коленчатому валу 10, который вращается по стрелке "В". Коленчатый вал, вращаясь, перемещает поршень вверх и через открытый выпускной клапан 7 продукты сгорания удаляются из двигателя в атмосферу (по стрелке "Б"). Коленчатый вал вращается в корпусе 1, который носит название картера. К передней части коленчатого вала может быть присоединен редуктор, вращение которого передается воздушному винту самолета.

Рассмотрим подробно схему работы четырехтактного поршневого двигателя, применяющегося сегодня в авиационном двигателестроении.

В четырехтактном поршневом двигателе внутреннего сгорания чередующиеся процессы преобразования тепловой энергии в механическую осуществляются в следующем порядке (рис. 1-5):

— поступление ТВС в камеру сгорания — впуск (первый такт);

— сжатие поступившей смеси (второй такт);

— расширение после сгорания смеси (третий такт);

— выпуск сгоревших газов (четвертый такт).

В начале такта впуска поршень 1 находится в верхнем положении. На рис. 1-3 это положение отмечено линией с обозначением ВМТ (верхняя мертвая точка). Нижнее положение поршня отмечено линией НМТ — нижняя мертвая точка. Таким образом, поршень во всех тактах перемещается от ВМТ к НМТ.

В первом такте (впуск) поршень, двигаясь вниз, при открытом впускном клапане 4 дает возможность смеси заполнить цилиндр 6. В процессе впуска цилиндр заполняется свежей ТВС. Чем больше попадет смеси в цилиндр к моменту закрытия впускного клапана, тем большую мощность может развивать двигатель.

Во втором такте (сжатие) коленчатый вал 3 через шатун 2 передает движение поршню 1, и он перемещается вверх, сжимая поступившую в цилиндр горючую смесь. В этот момент впускной клапан закрыт. Сжатие горючей смеси производится для того, чтобы обеспечить высокое давление. При большем давлении в процессе расширения будет выполнена большая работа.

В третьем такте (расширение) при закрытых клапанах впуска и выпуска в верхнюю часть цилиндра, в пространство над поршнем, находящимся в ВМТ, подается искра, от которой зажигается ТВС.

Сгорание начинается в конце такта сжатия. Сгорание топлива, входящего в топливовоздушную смесь, — химический процесс окисления углерода и водорода кислородом воздуха. В результате при полном сгорании образуются углекислый газ СО и вода Н2О. При неполном сгорании к ним добавляется окись углерода СО.

Рис.1-4. Принципиальная схема поршневого двигателя:

1— картер; 2— цилиндр; 3— поршень; 4— трубопровод подачи ТВС; 5— впускной клапан; 6— камера сгорания; 7— выпускной клапан; 8— свеча; 9— шатун; 10— коленчатый вал

Рис. 1-5. Схема работы четырехтактного поршневого двигателя:

1— поршень; 2— шатун; 3— коленчатый вал; 4— впускной клапан; 5— выпускной клапан; 6— цилиндр

Быстро расширяясь, сгоревшие газы толкают поршень вниз. Через шатун коленчатому валу придается вращательное движение. Поршень опускается до НМТ. Процесс расширения — основной процесс, так как именно здесь совершается работа по преобразованию тепла в механическую работу.

В четвертом такте (выпуск) поршень из НМТ поднимается, выталкивая сгоревшие газы через открытый клапан выпуска 5. Процесс выпуска заканчивается в момент закрытия выпускного клапана.

Все четыре такта в четырехтактном поршневом двигателе совершаются за два оборота коленчатого вала. Все процессы, происходящие в цилиндре двигателя, выполняются за два оборота коленчатого вала или четыре хода поршня и называются циклом двигателя. Цикл двигателя начинается с первого такта и заканчивается четвертым. Затем весь процесс снова повторяется, наступает следующий цикл. Поршневые двигатели, имеющие такой цикл, называются четырехтактными.

В описанной выше схеме на рис. 1-2 и 1-3 показан ПД с одним цилиндром. Из приведенного описания следует, что тепловая энергия сгоревшей смеси превращается в механическую работу только в третьем такте (расширение). Вот почему в одноцилиндровом двигателе вращение коленчатого вала не может быть равномерным, да и мощность один цилиндр выдает весьма малую. Поэтому поршневые двигатели делают многоцилиндровыми.





Дата добавления: 2014-02-24; просмотров: 963; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10531 - | 7949 - или читать все...

Читайте также:

  1. A. Понятие исполнения обязательства, принципы
  2. Ethernet - пример стандартного решения сетевых проблем. Ранее уже шла речь о принципах совместного использования канала несколькими интерфейсами, или, другими словами
  3. III. Принципы положенные в основу демографической политики в концепции РФ
  4. III. ПРИНЦИПЫ ПОСТРОЕНИЯ КУРСА
  5. Internet. Основные услуги, представляемые Internet. Структура Internet. Принцип коммутации пакетов при передаче информации. Типы доступа в Internet
  6. IV. Первая медицинская помощь и основные принципы лечения
  7. V2: {{2}} 3.2 Принципы диагностики эмоционально-волевой сферы
  8. VI. 1. Понятие и признаки государственных органов, принципы их формирования
  9. VIII. Принципы работы вычислительной системы
  10. X. Принципы построения системы УП
  11. Адсорбционный метод очистки выбросов. Конструкции адсорберов, принцип действия
  12. Аксиомы статики. Все теоремы и уравнения статики выводятся из нескольких исходных положений, принимаемых без доказательств и называемых аксиомами или принципами статики


 

18.207.238.169 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.004 сек.