Прогресс технологии

Истинная скорость работы

Совокупное использование синхронизации работы, расслоения банков и пакетно-конвейерного режима способствует значительно (в несколько раз) ускорению работы системы памяти. Кроме того, SDRAM в состоянии работать без циклов задержки на частоте до 100 МГц, а наиболее качественные модули - до 125 МГц (на практике достигается до 133 МГц). Таким образом, время цикла памяти SDRAM составляет 7 - 10 нс. Существует мнение, что указываемое в спецификациях время цикла соответствует времени доступа. Считают, что у памяти SDRAM с частотой 100 МГц время доступа равно 10 нс., и она всегда работает в 5 раз быстрее, а у EDODRAM - 50 нс. На самом деле это не так. И те и другие модули имеют полное время доступа 50 нс., то есть при обращении по случайному адресу данные будут получены именно через это время для обоих модулей памяти. При последовательном обращении второе слово модуль EDO выдаст через 20 нс., а модуль SDRAM - через 10 нс. Очевидно двукратное ускорение. При четырёх последовательных обращениях (наиболее распространённый случай) модулю EDO для выполнения запроса потребуется

50 + 3 х 20 = 110 нс., модулю SDRAM соответственно

50 + 3 х 10 = 80 нс.

Можно заметить, что никакого пятикратного роста нет - быстродействие SDRAM выше примерно на 50 % и полностью пропадает при большом числе обращений по случайным адресам.

Впрочем, сегодня разговоры о том, что SDRAM безусловно быстрее, чем любые другие типы оперативной памяти, вполне уместны: если для EDO не существует в природе (а если и существует, то в продаже не появлялись) модули со временем доступа меньшим, чем упомянутые 50 нс., то для SDRAM время цикла 10 нс.отнюдь не предел. Сейчас наибольшее распространение получают микросхемы с временем цикла 8 и даже 7 нс. Время доступа для них равно уже не 50, а 40 нс., благодаря чему получается значительный выигрыш по сравнению с EDO. Если вернуться к нашему примеру, то SDRAM с частотой 125 МГц.на считывание четырёх слов затратит

40 + 3 х 8 = 64 нс.впрочем, с такой скоростью может не справиться системная шина, официально пока не работающая с частотами больше 100 МГц.)

С современными задачами SDRAM в принципе справляется неплохо. Однако уже в ближайшее время её возможностей может оказаться недостаточно. Во-первых, это касается скорости её работы, которую неплохо бы увеличить уже сегодня. А во-вторых, важно дальнейшее повышение рабочей частоты, хотя это становится очевидным не сразу. Дело в том, что повышать внутреннюю частоту центрального процессора путём увеличения множителя занятие не благодарное: на определённом этапе может появиться более дорогой процессор, чем существующая модель, но при этом практически не повышающий быстродействие системы (которое зависит не только от скорости работы процессора, но и от частоты работы материнской платы). В этой связи очень показательна ситуация с компьютером на базе IntelPentium 166 и 200. В своё время их стоимость отличалась в значительной степени, а по части производительности системы разрыв получался порядка 5%. Линию PentiumII пока спасает встроенный кэш второго уровня, но надолго ли его хватит? Скорее всего, недавно выпущенный PentiumII 500 станет последним в ряду процессоров с внешней частотой 100 МГц.это косвенно подтверждает и Intel, объявив, что для новых процессоров разрабатывается шина с частотой 200 МГц. а возможностей классической SDRAM уже недостаточно.

Один из выходов в применении разработанной компанией Samsung памяти типа DoubleDataRateSDRAM, называемой также SDRAMII. Ныне она уже стандартизирована ассоциацией и поддерживается некоторыми чипсетами. Благодаря отдельным косметическим улучшениям, данная память способна работать на частоте 200 МГц и обеспечивает в два раза большую производительность, чем SDRAM.

Ещё более производительной будет память SLDRAM. Она работает не с четырьмя, а с шестнадцатью банками и поддерживает частоту до 400 МГц.впрочем, это лишь проект, проводимый группой из двенадцати крупнейших производителей DRAM. Выход новой памяти на рынок ожидается в ближайшее время, пока имеются лишь образцы. Межотраслевой стандарт отсутствует.

Поскольку процессоры некоторых архитектур уже перешагнули барьер в 1 ГГц повышение в будущем тактовой частоты обеспечиваемой SLDRAM даже до 400 МГц, будет не достаточно необходимо по меньшей мере 600 МГц. Пропускная способность 400 Мбайт/с тоже невелика: до сих пор, разрабатываются новые микросхемы памяти, все пытаются угнаться по быстродействию за процессорами, но ни о каком запасе скорости на пару-тройку лет развития и речи нет, а потребность в этом уже ощущается.

В общем обычные микросхемы DRAM просто не способны работать в необходимом сейчас режиме, поэтому нужен переход на новую технологию, которая уже предложена фирмой Rambus и называется RDRAM. У неё масса весьма существенных отличий от обычной памяти. Первоначальный вариант RDRAM, применённый в графических рабочих станциях ещё в 1995 году. По возможностям (600 МГц частота и 600 Мбайт/спропускная способность) обгоняет SLDRAM, который ещё год придётся ждать.

В1997 году появилась улучшенная спецификация ConcurrentRDRAM - по скорости она аналогична предыдущей, однако показывает хорошие результаты даже на маленьких блоках. Благодаря отличным характеристикам новой памяти, её лицензировало огромное количество производителей.уже сей час она применяется в мощных игровых приставках и многих платах расширения для РС. Данный проект получил поддержку Intel ещё в 1996 году. В следующем году фирма Rambus продемонстрирует новое улучшение RDRAM, которое называется DirectRDRAM. Память этого типа будет способна работать на частоте до 800 МГц, обеспечивая быстродействие 1,6 Гбайта/с для однобанкового модуля и 3,2 Гбайта для двухбанкового. Пока память типа Rambus не стандартизирована на высоком уровне, но этого вполне можно ожидать.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: