Тема 2.4 Азотсодержащие органические соединения. Полимеры

Известно множество природных и синтетических органических соединений, содержащих в своем составе атомы азота. Среди них:

- нитросоединения R-NO2;

- нитраты R-O-NO2;

- амиды карбоновых кислот R-CONH2;

- нитрилы R-CN;

- амины R-NH2,

- некоторые азотистые гетероциклы (гетероциклические амины);

- аминокислоты (NH2-R-COOH).

Строение и, следовательно, свойства соединений азота определяются характером его химических связей и типом гибридизации, влияющей на форму молекулы.

Тип гибридизации азота Электронная конфигурация Число гибридных орбиталей Валентный угол
sp3 1s2 (2sp3)5   » 107°
sp2 1s2 (2sp2)4 2p1   120°
sp 1s2 (2sp)3 2p2   180°

За счет трех одноэлектронных АО азот способен к образованию трех ковалентных связей с другими атомами по обменному механизму. В этом случае азот проявляет валентность 3 и имеет неподеленную электронную пару. Такой атом азота может выступать донором пары электронов, образуя четвертую связь по донорно-акцепторному механизму. При этом азот пробретает максимальную валентность 4 (напомним, что максимальная валентность атома определяется числом его внешних атомных орбиталей; у азота их четыре - одна 2s и три 2p).

Четырехвалентный азот несет на себе положительный заряд и может участвовать в образовании ионной связи (подобно иону аммония [NH4]+).

Электроотрицательности азота, водорода, углерода и кислорода равны, соответственно, 3.0, 2.1, 2.5 и 3.5. Поэтому связи азота с Н, С или О являются ковалентными полярными.

В связях трехвалентного азота с углеродом или водородом электронная плотность смещена к более электроотрицательному атому азота, создавая на нем частичный отрицательный заряд, а на углероде или водороде - частичный положительный. В связях азота с кислородом, напротив, электронная плотность смещена от атома азота к атому кислорода, электроотрицательность которого выше.

Связи с четырехвалентным азотом, несущим положительный заряд, отличаются более высокой полярностью.

Распределение электронной плотности на атомах в молекуле определяет ее реакционную способность.

Белки органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.

По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 105 остатков аминокислот, что отвечает относительной молекулярной массе 1 • 104 – 1 • 107.

Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH2 другой молекулы:

Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.

При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называютсянезаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.

Синтетические полимеры - это ненатуральные полимерные материалы, произведенные для замены природным материалам.

Промышленное изготовление искусственных полимеров осуществляется несколькими способами - путем переделки натуральных органических полимеров в искусственные полимерные материалы, а также способом «добывания» искусственных полимеров из органических низкомолекулярных соединений.

Среди синтетических полимеров есть отдельная группа, включающая каучуки и каучукоподобные полимеры. Эти материалы характеризуются удивительной деформативностью и высокоэластичными свойствами, из-за чего им и дали название эластомер.

Синтетические полимеры формируются благодаря полимеризации и поликонденсации. Карбоцепные полимеры зачастую синтезируются полимеризацией мономеров с одним или более кратным углеродными связями или мономеров, держащих в себе неустойчивые карбоциклические группировки.

Первый материал был изготовлен из физической модифицированной целлюлозы еще в начале двадцатого века и до сегодняшнего времени из этого же материала производят волокна, пленки, загустители и лаки. Он приобрел название целлулоид, который всем известен как целлюлоза.

Полимер это (от греч. πολύ- - «много» и μέρος - «часть») -высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок - составных звеньев, соединенных между собой химическими или координационными связями в длинные линейные (например, целлюлоза) или разветвленные (например, амилопектин) цепи, а также пространственные трёхмерные структуры.

Часто в его строении можно выделить мономер - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, называют например поливинилхлорид (-СН2—СНСl-)n, каучук натуральный и др.

Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений.

Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат...

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, в быту (текстильные и кожевенные предмета торговли, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: