double arrow

Генетика вирусов


Классификация и биологическая роль плазмид.

Функциональная классификация плазмид основана на свойствах, которыми они наделяют бактерии. Среди них - способность продуцировать экзотоксины и ферменты, устойчивость к лекарственным препаратам, синтез бактериоцинов.

Основные категории плазмид.

1.F- плазмиды - донорские функции, индуцируют деление (от fertility - плодовитость). Интегрированные F - плазмиды- Hfr- плазмиды (высокой частоты рекомбинаций).

2.R- плазмиды (resistance) - устойчивость к лекарственным препаратам.

3.Col- плазмиды- синтез колицинов (бактериоцинов)- факторов конкуренции близкородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов.

4.Hly- плазмиды- синтез гемолизинов.

5.Ent- плазмиды- синтез энтеротоксинов.

6.Tox- плазмиды- токсинообразование.

Близкородственные плазмиды не способны стабильно сосуществовать, что позволило объединить их по степени родства в Inc- группы (incompatibility- несовместимость).

Биологическая роль плазмид многообразна, в том числе:

- контроль генетического обмена бактерий;

- контроль синтеза факторов патогенности;

- совершенствование защиты бактерий.




Бактерии для плазмид- среда обитания, плазмиды для них- переносимые между ними дополнительные геномы с наборами генов, благоприятствующих сохранению бактерий в природе.

Мигрирующие генетические элементы - отдельные участки ДНК, способные определять свой перенос между хромосомами или хромосомой и плазмидой с помощью фермента рекомбинации транспозазы. Простейшим их типом являются инсерционные последовательности (IS- элементы) или вставочные элементы, несущие только один ген транспозазы, с помощью которой IS- элементы могут встраиваться в различные участки хромосомы. Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, индукция мутаций. Величина IS- элементов не превышает 1500 пар оснований.

Транспозоны (Tn- элементы) включают до 25 тысяч пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два Is- элемента. Каждый транспозон содержит гены, привносящие важные для бактерии характеристики, как и плазмиды (множественная устойчивость к антибиотикам, токсинообразование и т.д.). Транспозоны- самоинтегрирующиеся фрагменты ДНК, могут встраиваться и перемещаться среди хромосом, плазмид, умеренных фагов, т.е. обладают потенциальной способностью распространяться среди различных видов бактерий.

Понятие о генотипе и фенотипе.

Генотип- вся совокупность имеющихся у организма генов.

Фенотип - совокупность реализованных (т.е. внешних) генетически детерминированных признаков, т.е. индивидуальное (в определенных условиях внешней среды) проявление генотипа. При изменении условий существования фенотип бактерий изменяется при сохранении генотипа.



Изменчивость у бактерий может быть ненаследуемой (модификационной) и генотипической (мутации, рекомбинации).

Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу.

Стандартное проявление модификации- распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении Sà R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей.

Мутации - скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).

Одновременно у бактерий имеются различные механизмы репарации мутаций, в том числе с использованием ферментов - эндонуклеаз, лигаз, ДНК- полимеразы.

Генетические рекомбинации - изменчивость, связанная с обменом генетической информации. Генетические рекомбинации могут осуществляться путем трансформации, трансдукции, конъюгации, слияния протопластов.



1.Трансформация- захват и поглощение фрагментов чужой ДНК и образование на этой основе рекомбинанта.

2.Трансдукция- перенос генетического материала фагами (умеренными фагами- специфическая трансдукция).

3.Конъюгация - при непосредственном контакте клеток. Контролируется tra (transfer) опероном. Главную роль играют конъюгативные F- плазмиды.

Геном вирусов содержит или РНК, или ДНК (РНК- и ДНК- вирусы соответственно). Выделяют позитивную (+) РНК, обладающую матричной активностью и соответственно- инфекционными свойствами, и негативную ( - ) РНК, не проявляющую инфекционные свойства, которая для воспроизводства толжна транскрибироваться (превращаться) в +РНК. Механизмы репродукции различных вирусов очень сложные и существенно отличаются. Основные их схематические варианты представлены ниже.

1. вирионная (матричная) +РНК à комплементарная -РНК (в рибосомах) à вирионная +РНК.

2. - РНК à вирусная (информационная) +РНК à - РНК (формируется на геноме зараженной клетки).

3. однонитевая ДНК: +ДНК à +ДНК -ДНК à +ДНК -ДНК +ДНК à +ДНК.

4. ретровирусная однонитевая РНК: РНК à ДНК (провирус) à РНК.

5. двунитевая ДНК: разделение нитей ДНК и формирование на каждой комплементарной нити ДНК.

Генофонд вирусов создается и пополняется из четырех основных источников:

двух внутренних (мутации, рекомбинации) и двух внешних (включение в геном генетического материала клетки хозяина, поток генов из других вирусных популяций).

Комплементация- функциональное взаимодействие двух дефектных вирусов, способствующее их репликации и горизонтальной передаче.

Фенотипическое смешивание - при заражении клетки близкородственными вирусами с образованием вирионов с гибридными капсидами, кодируемыми геномами двух вирусов.







Сейчас читают про: