Интерференционная микроскопия

Инвертированные микроскопы

Специализированные микроскопы, предназначенные для работы в режиме фазового контраста, их используют главным образом для наблюдения культур клеток, и они позволяют видеть изменения клеток в процессе культивирования. Эти модели микроскопов адаптированы для наблюдения клеток в чашках Петри, в сосудах Карреля и других культуральных сосудах. Инвертированные микроскопы имеют обратное расположение оптики - объективы находятся снизу, а конденсор – сверху.

Направление хода лучей, прошедших сверху вниз через объектив, изменяется системой зеркал, и в глаз наблюдателя они попадают, как обычно, снизу вверх. Микроскопы этого типа предназначены так же для исследования громоздких объектов, которые трудно или невозможно расположить на предметных столиках обычных микроскопов.

Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч, входящий в микроскоп, раздваивается; один из полученных лучей направляется сквозь наблюдаемую частицу, а второй — мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Результат интерференции определяется разностью хода лучей d, которая выражается формулой d = N l = (n0nm) d, где n0, nm — показатели преломления частицы и окружающей среды, d — толщина частицы, N — т. н. порядок интерференции, l — длина волны света.

Метод интерференционного контраста в некоторых отношениях сходен с методом фазового контраста — оба они основаны на интерференции лучей, прошедших через микрочастицу и миновавших её. Как и фазово-контрастная микроскопия, этот метод позволяет наблюдать прозрачные и бесцветные объекты, но их изображения могут быть и разноцветными (интерференционные цвета). Оба метода пригодны для изучения живых тканей и клеток (и часто применяются именно с этой целью).

Отличие интерференционного метода от метода фазового контраста заключается главным образом в возможности, используя компенсаторы, с высокой точностью (до 1/300 l) измерять разности хода, вносимые микрообъектами. Это открывает широкие возможности количественных исследований — на основании таких измерений могут быть рассчитаны общая масса и концентрация сухого вещества в микрообъекте (например, в растительной или животной клетке), показатель преломления и размеры объекта. Метод интерференционного контраста часто сочетают с другими методами микроскопии, в частности с наблюдением в поляризованном свете; применение его совместно с микроскопией в ультрафиолетовых лучах позволяет, например, определить содержание нуклеиновых кислот в общей сухой массе объекта.

Интерференционная микроскопия дает изображение, как будто объект освещен сбоку, изображение формируется как сочетание свет-тень. Имеют значение даже небольшие различия в коэффициентах преломления и толщине участков объекта. Позволяет изучать крупные органоиды. Оптика Номарского – специальная призма, улучшающая качество изображения в интерференционном микроскопе.

Микроскопия в поляризованном свете (поляризационная микроскопия) – другой способ наблюдения неокрашенных препаратов.

Метод наблюдения в поляризованном свете (поляризационная микроскопия) служит для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). К ним относятся многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в разных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно вести как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор; сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него), и эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. По таким изменениям можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

Дифференциально-интерференционный контраст в проходящем свете (DIC)

Дифференциально интерференционный контраст ( интерференционный контраст по Номарскому ), - наиболее популярный метод достижения контраста, используемый сейчас даже чаще, чем фазовый контраст. Он давно применяется в материаловедении, где часто используется падающий свет, а теперь метод Номарского быстро вытесняет фазовый контраст в биологических исследованиях.

Принцип метода состоит в том, что луч плоскополяризованного света расщепляется призмой Волластона на два луча. Оба они проходят через объект очень близко друг к другу, однако достаточно далеко для глаза наблюдателя, что создает эффект объемности за счет различий в интенсивностях освещенности деталей в конечном изображении. Два луча совмещаются второй призмой Волластона, расположенной в задней фокальной плоскости объектива. Анализатор завершает формирование изображения.

Два луча имеют боковой сдвиг друг относительно друга, и направление сдвига воспринимается как направление подсветки изображения с одной стороны. Разность длин оптических путей двух лучей обычно устанавливается так, чтобы получился так называемый нулевой серый фон, на котором объект будет ограничен соответственно светлой или темной каймой. Однако, перенастроив микроскоп, можно добиться поворота тени на 180°. Поворот тени дает интересный эффект. Препарат, который сначала имел сходство с яичницей-глазуньей, после перенастройки приобретает вид пластинки с углублениями. Это необходимо учитывать, представляя фотомикрографии, полученные этим методом. Аналогичный результат может получиться, если поворачивать отпечаток.

Сильно передвинув призму Волластона, можно получить окрашенное изображение на приятном цветном фоне. Цвета снова относятся к отрицательной части интерференционной шкалы Ньютона для белого света.

Витальная микроскопия.

Методы прижизненной (витальной) окраски. Прижизненные красители - органические соединения ароматического ряда, обладающие относительно небольшой токсичностью для живых клеток. Различаются основные и кислые красители. Проникая в клетку, они соединяются главным образом с белками, и вначале вся цитоплазма приобретает диффузную окраску, после чего некоторые красители откладываются в цитоплазме в виде гранул. Окраска живых клеток дает возможность выявлять изменения, происходящие в клетках и тканях при разных внешних воздействиях. В последнем случае чрезвычайно важно то, что количество красителя, поглощенного неповрежденными или поврежденными путем какого-либо воздействия клетками, можно точно определить и выразить количественно. Разница в количестве красителя, поглощенного неповрежденными и поврежденными клетками, свидетельствует о характере и степени изменений, возникающих под влиянием различных внешних воздействий.

Индиго окрашивает ядра клеток, а метиленовый фиолетовый - все структуры клетки.

Красители для витального окрашивания должны обладать низкой токсичностью и способностью легко проникать в клетки живого окрашиваемого объекта. Используются красители для видимого света и флуоресцентные красители.

  • Основные красители:

Акридиновый оранжевый

Метиленовый синий - используется для витального окрашивания простейших, изолированных клеток, культур тканей, тонких плёнок живых тканей. Используется раствор 1:1000 — 1:10 000. В ботанике используется для окраски вакуолей, накапливаясь в клетках, содержащих дубильные вещества. Может использоваться для окраски митохондрий.

  • Кислые красители:

Индигокармин

Кислый фуксин

Калий-флуоресцин

Эозин

  • Нейтральные красители:

Родамин B


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: