Эффект Комптона и его элементарная теория

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892—1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение. Опыты показали, что разность ∆λ=λ’-λне зависит от длины волны λ падающего излучения и природы рассеивающего вещества, а определяется только углом рассеяния θ:

(5.1)

λ’ - длина волны рассеянного излучения, λс -комптоновская длина волны.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и γ-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представляет собой поток фотонов, то эффект Комптона — результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.

Рассмотрим упругое столкновение двух частиц (рис. 4)— налетающего фотона, обладающего импульсом pγ=hv/cи энергией ξγ=hv, спокоящимся свободным электроном (энергия покоя W0=m0c2; m0— масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом столкновении выполняются законы сохранения энергии и импульса. Согласно закону сохранения энергии,

(5.2)

а согласно закону сохранения импульса,

(5.3)

гдe W0=m0c2 – энергия электрона до столкновения, ξγ=hv — энергия налетающего фотона, — энергия электрона после столкновения (используется релятивистская формула, так как скорость электрона отдачи в общем случае значительна ε’γ=hv — энергия рассеянного фотона. Подставив в выражение (5.2) значения величин и представив (5.3) в соответствии с рис. 3, получим

(5.4)

 
 

(рис. 3)

(5.5)

Решая уравнения (206.4) и (206.5) совместно, получим

Поскольку ν=c/λ, ν’=c/λ’ и ∆λ=λ’-λ, получим (5.6)

(5.6)

Выражение (5.6) есть не что иное, как полученная экспериментально Комптоном формула (5.1). Подстановка в нее значений h, mQ и с дает комптоновскую длину волны электрона λс=h/(m0c)=2,426 пм.

Наличие в составе рассеянного излучения несмещенной линии (излучения первоначальной длины волны) можно объяснить следующим образом. При рассмотрении механизма рассеяния предполагалось, что фотон соударяется лишь со свободным электроном. Однако если электрон сильно связан с атомом, как это имеет место для внутренних электронов (особенно в тяжелых атомах), то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома по сравнению с массой электрона очень велика, то атому передается лишь ничтожная часть энергии фотона. Поэтому в данном случае длина волны λlрассеянного излучения практически не будет отличаться от длины волны λпадающего излучения.

Из приведенных рассуждений следует также, что эффект Комптона не можетнаблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором — поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект — со связанными электронами. Можно показать, что при столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: