Движение заряженных частиц в электрических и магнитных полях

1. В данном вопросе мы ограничимся рассмотрением движения заряженной частицы в однородных постоянных полях.

В магнитном поле сила Лоренца будет иметь только одну магнитную составляющую

[],

которая всегда перпендикулярна траектории движения и поэтому работы не совершает, а только искривляет траекторию, не изменяя величину скорости. Такого рода силы называются гироскопическими.

В общем случае скорость частицы составляет угол с вектором(рис. 3) и ее можно разложить на два вектора (параллельно и перпендикулярно вектору )

,

где , , а само движение частицы можно представить в виде наложения двух движений с этими скоростями.

Рассмотрим сначала движение частицы со скоростью , параллельной вектору магнитной индукции. В этом случае , и частица движется вдоль силовой линии магнитного поля.

Во втором движении со скоростью сила Лоренца не изменяется по величине и создает нормальное ускорение в плоскости, перпендикулярной вектору . Поэтому траектория такого движения пред-ставляет собой окружность радиуса r в этой плоскости. Условие движения по окружности, записанное на основе второго закона Ньютона,

позволяет найти радиус окружности и угловую скорость вращения частицы

,

,

которые называются циклотронным радиусом и циклотронной частотой.

Циклотронный радиус пропорционален импульсу частицы и обратно пропорционален величине ее заряда и магнитной индукции. Циклотронная частота обратно пропорциональна массе частицы и пропорциональна ее заряду и магнитной индукции.

Направления вращения частиц с положительным и отрицательным зарядом взаимно противоположны из-за различия в направлениях силы Лоренца (рис. 2). В векторной форме циклотронную частоту можно записать в виде формулы

. (7)

Для положительно заряженной частицы направление угловой скорости противоположно направлению вектора , для отрицательно заряженной частицы – совпадает с вектором .

2. В общем случае, когда частица участвует во вращательном движении вокруг направления вектора и в поступательном параллельно силовой линии, результирующее движение частицы будет происходить по винтовой линии. Для положительно заряженных частиц винтовая линия соответствует левому винту, для отрицательно заряженных – правому (рис. 4). Если векторы и направлены противоположно друг другу, то наоборот.

Данное движение используется в системах, фокусирующих электронный пучок в электронно-лучевых трубках. Дело в том, что шаг винтовой линии, определяемый произведением и периода обращения ,

для электронов, вылетающих из электронной пушки под разными углами к оси пучка, не зависит от угла из-за его малости ().

Поэтому все электроны, вылетевшие из электронной пушки под небольшими, но разными углами соберутся в одной точке через период обращения. Шаг винтовой линии можно изменять, варьируя величину магнитной индукции, что позволяет осуществлять фокусировку электронного луча на экране электронно-лучевой трубки.

Выводы.

1) Сила, действующая на заряженную частицу со стороны магнитного поля, работы не совершает. Она вызывает вращательное движение частиц вокруг направления вектора магнитной индукции с угловой скоростью .

2) В общем случае заряженная частица движется по винтовой линии.

3. Магнитное поле двигающегося заряда

1. Пусть заряженная частица движется со скоростью относительно лабораторной системы отсчета K. В системе , которая движется вместе с частицей, магнитное поле отсутствует (), а электрическое поле описывается формулой

.

Это обычное электростатическое поле неподвижного точечного заряда.

В неподвижной системе отсчета , в соответствии с преобразованиями (5), (6), находим

(),

.

Отсюда следует, что при медленных движениях заряженная частица создает в окружающем пространстве электрическое поле такое же, как неподвижная и магнитное с индукцией

. (8)

При этом радиус-вектор проводится от заряда в точку наблюдения.

Проанализируем данное выражение. Величина вектора магнитной индукции

зависит обратно пропорционально квадрату расстояния от заряда до рассматриваемой точки поля, прямо пропорционально величине заряда и его скорости. Но пространственное распределение магнитной индукции вокруг заряда сложнее, чем для электрического поля.

В формулу магнитной индукции входит синус угла между направлениями скорости и радиус-вектора , проведенного от заряда в точку наблюдения (рис. 5).

Магнитная индукция обращается в нуль на линии, проходящей через заряд параллельно вектору скорости (), и максимальна в плоскости, проходящей через заряд перпендикулярно вектору ().

Направление вектора магнитной индукции перпендикулярно вектору скорости и радиус-вектору (рис. 5).

Если, сохраняя угол a и длину вектора, повернуть радиус-вектор вокруг вектора скорости, то его конец опишет окружность. В каждой точке этой окружности вектор будет направлен по касательной к ней. Следовательно, такая окружность будет являться линией вектора (силовой линией магнитного поля).

Опыт показывает, что для магнитного поля выполняется принцип суперпозиции полей

.

Магнитная индукция результирующего поля в некоторой точке равна векторной сумме магнитных индукций полей, создаваемых различными источниками в этой точке.

2. Рассмотрим теперь магнитное поле, создаваемое в произвольной точке бесконечно малым отрезком тонкого проводника длины , по которому идет ток силой I.

Величина называется элементом тока. Направление вектора совпадает с направлением тока. Так как сила тока по определению , где S является площадью поперечного сечения проводника, то элемент тока можно выразить через плотность тока , где является объемом выделенного участка проводника. Здесь учтено, что векторы и совпадают по направлению.

Все носители заряда, находящиеся в этом элементе тока, движутся упорядоченно со средней скоростью и создают в данной точке пространства одинаковую магнитную индукцию. Поэтому результирующую магнитную индукцию, создаваемую всеми носителями заряда в произвольной точке, можем получить, умножив число носителей в элементе тока , где n – концентрация носителей заряда в проводнике, на магнитную индукцию , создаваемую одним носителем в этой точке

. (9)

Здесь плотность тока выражена через среднюю скорость упорядоченного движения носителей заряда. Радиус–вектор проводится от элемента тока в точку наблюдения.

Полученное выражение называется законом Био-Савара-Лапласа. Оно позволяет рассчитать магнитное поле любой системы проводников, используя принцип суперпозиции

. (10)

Штрихованные переменные относятся к точке интегрирования.

Сравнение формул (8) и (9) показывает, что конфигурация и распределение в пространстве магнитных полей элемента тока и движущегося заряда идентичны (рис. 6). Величина вектора магнитной индукции, создаваемого элементом тока, пропорциональна величине элемента тока, синусу угла между направлением тока и направлением на точку наблюдения и обратно пропорциональна квадрату расстояния от источника до точки наблюдения

.

Элемент тока создает максимальную магнитную индукцию в плоскости, перпендикулярной элементу тока, и не создает на прямой, проходящей через элемент тока, параллельно вектору . Линии вектора напряженности – суть окружности вокруг этой прямой.

Выводы.

1) Магнитное поле движущегося заряда является следствием движения заряженной частицы и ее электрического поля.

2) Магнитное поле элемента тока и движущегося заряда имеют одинаковое распределение силовой характеристики в пространстве. Это обусловлено тем, что электрический ток представляет собой упорядоченное движение заряженных частиц.

3) Элемент тока и движущийся заряд создают максимальную магнитную индукцию в плоскости, перпендикулярной направлению движения зарядов. Силовые линии в обеих случаях представляют собой окружности, перпендикулярные касательной к траектории движения. Магнитное поле не создается на прямой, касательной к траектории движения зарядов.

4) Магнитная индукция обратно пропорциональна квадрату расстояния от заряда до точки наблюдения. Это обусловлено распределением в пространстве электрического поля заряженной частицы и преобразованием его в магнитное поле при движении.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: