Гомеостаз экосистемы.
Гомеостаз – способность биологических систем – организма, популяции и экосистем – противостоять изменениям и сохранять равновесие. Исходя из кибернетической природы экосистем – гомеостатический механизм – это обратная связь. Например, у пойкилотермных животных изменение температуры тела регулируется специальным центром в мозге, куда постоянно поступает сигнал обратной связи, содержащий данные об отклонении от нормы, а от центра поступает сигнал, возвращающий температуру к норме. В механических системах аналогичный механизм называют сервомеханизмом, например, термостат управляет печью.
Для управления экосистемами не требуется регуляция извне – это саморегулирующаяся система. Саморегулирующий гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов. Одни из них – субсистема «хищник – жертва». Между условно выделенными кибернетическими блоками управление осуществляется посредством положительные и отрицательных связей. Положительная обратная связь «усиливает отклонение», например увеличивает чрезмерно популяцию жертвы. Отрицательная обратная связь «уменьшает отклонение», например, ограничивает рост популяции жертвы за счет увеличения численности популяции хищников.
|
|
|
Наиболее устойчивы крупные экосистемы и самая стабильная из них – биосфера, а наиболее неустойчивы молодые экосистемы. Это объясняется тем, что в больших экосистемах создается саморегулирующий гомеостаз за счет взаимодействия круговоротов веществ и потоков энергии (Ю. Одум, 1975).
Энергетические потоки. Жизнь на Земле существует за счет солнечной энергии. Свет – единственный на Земле пищевой ресурс, энергия которого, в соединении с углекислым газом и водой, рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т.д., в конечном итоге растения «кормят» весь остальной живой мир, т.е. солнечная энергия через растения как бы передается всем организмам.
Энергия передается от организма к организму, создающих пищевую, или трофическую цепь: от автотрофов, продуцентов (создателей) к гетеротрофам, консументам,(пожирателям) и так 4-6 раз с одного трофического уровня на другой.
Трофический уровень – это место каждого звена в пищевой цепи. Первый трофический уровень – это продуценты, все остальные – консументы. Второй трофический уровень – это растительноядные консументы; третий – плотоядные консументы питающиеся растительноядными формами; четвертый – консументы, потребляющие других плотоядных, и.т.д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т.д. порядков.
|
|
|
Четко распределяются по уровням лишь консументы, специализирующиеся на определенном виде пищи. Однако есть виды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включать в пищевые цепи на любом уровне.
Пища, поглощаемая консументами, усваивается не полностью – от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, которые называют тратой на дыхание, оцениваемая общим количеством углекислого газа, выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т.е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в тепловую и рассеивается в окружающей среде.
Таким образом, большая часть энергии при выходе с одного трофического уровня на другой, более высокий, теряется. Приблизительно потери составляют около 90%: на каждый следующий уровень передается не более 10% энергии от предыдущего уровня. Так, если калорийность продуцента 1000 Дж, то при попадании в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю остается лишь 1Дж, т.е. 0,1% от калорийности растительной пищи.
Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.
Нельзя забывать еще и мертвую органику, которой питается значительная часть гетеротрофов. Среди них еть и сапрофаги и сапротрофы (грибы), использующие энергию, заключенную в детрите. Поэтому различают два вида трофических цепей: цепи выедания или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных.
Таким образом, входя в экосистему, поток лучистой энергии разбивается на две части, распространяясь по двум видам трофических сетей, но источник энергии общий – солнечный свет.
Принцип биологического накопления. В круговорот веществ в экосистеме часто добавляются вещества, попадающие сюда извне. Они концентрируются в трофических цепях и накапливаются в них, т.е. происходит их биологического накопление. Это явление наглядно видно на примере концентрирования радионуклидов и пестицидов в трофических цепях.
Наиболее известна способность к биологическому накоплению у ДДТ – вещества, ранее широко применявшегося для борьбы с вредными насекомыми и запрещенного к применению в настоящее время. Ю. Одум (1975) приводит пример того, как недоучет закономерностей биологического накопления, обусловленного экологическими процессами, привел к гибели птиц, питающихся гидробионтами, хотя опыляли комаров на болотах Лонг-Айленда, давая концентрацию ДДТ значительно ниже дозы, смертельной для рыб и других животных. Он объясняет это тем, что ядовитые осадки адсорбировались на детрите, концентрировались в тканях редуцентов (детритофагов) и меткой рыбы, а дальше – в хищниках, таких как рыбоядные птицы. Благодаря многократному поглощению с начала детритной цепи, яд накапливается в жировых отложениях рыб и птиц. И даже если его доза ниже смертельной и птицы не погибли сами, то ДДТ препятствовал образованию яичной скорлупы: тонкая скорлупа лопалась еще до того, как разовьется птенец. Такие явления могут привести к уничтожению целых популяций хищных птиц, например скопы.
Таким образом, принципы биологического накопления надо учитывать при любых поступлениях загрязнений в среду.






