Магнитное поле цилиндрического проводника с током

Пусть по бесконечно длинному цилиндрическому проводу радиуса R про­текает по­стоянный ток I. Выберем систему координат x, y, z так, чтобы ось про­вода совпадала с осью координат z (рис. 22).

 
 


Будем считать, что ток равномерно распределяется по сечению провода, тогда его плотность будет равна

Для исследования магнитного поля выделим две неравнозначные об­ласти, для каж­дой из которых выполним расчет параметров магнитного поля:

1) область внутри провода при 0 £ r £ R,

2) область вне провода при R £ r £ ¥.

Для расчета поля во внутренней области выберем контур интегрирования в виде ок­ружности с текущим радиусом r < R. Тогда ток внутри контура интег­рирования:

, откуда

Применим к контуру интегрирования закон полного тока в интеграль­ной форме:

,

откуда следует и .

Векторы и направлены по касательной к окружности, их направле­ние опре­деляется по правилу правоходового винта.

При увеличении радиуса на элементарную величину dr произойдет приращение магнитного потока на величину на единицу длины провода (l = 1) и приращение магнитного потокосцепления на величину dy:

Внутренний магнитный поток и внутреннее потокосцепление найдутся в резуль­тате интегрирования полученных выше выражений по всему сечению провода:

,

.

Из последнего уравнения следует формула для внутренней индуктив­ности провода на еди­ницу длины:

[Гн/м]

Внутренняя индуктивность провода зависит от его магнитной прони­цаемости m (для стальных проводов она значительно больше, чем для медных или алюминиевых) и не зави­сит от его радиуса.

Для расчета поля во внешней области выберем контур интегрирования в виде окруж­ности с текущим радиусом r > R. Ток внутри контура интегрирова­ния равен I и не зависит от текущего значения радиуса r. Из закона полного тока следует:

, откуда и

Приращения магнитного потока и потокосцепления dy будут равны:

Внешний магнитный поток Фвнеш и соответственно внешнее потокосце­пление Y внеш найдутся в результате интегрирования полученных выше выраже­ний по сечению вне про­вода:

,

где R’ < ¥ - внешний радиус в окружающем провод пространстве, где произво­дится расчет параметров поля.

Внешняя индуктивность провода на единицу длины:

[Гн/м]

5. Магнитное поле двухпроводной линии

По двухпроводной линии с заданными геометрическими размерами (рис. 24) (R – радиус проводов, d - расстояние между осями проводов) протекает по­стоянный ток I.

 
 


Результирующий вектор магнитной индукции в произвольной точке n можно определить по методу наложения как геометрическую сумму состав­ляющих этого вектора и от каждого провода в отдельности: =+. Составляющие вектора и определяются по полученным ранее формулам, а их направления – по правилу правоходового винта:

,

Результирующую индуктивность линии на единицу длины можно найти как сумму индуктивностей прямого и обратного провода:

L = L 1 + L 2 = 2 L внут + 2 L внеш = .

При определении внешней индуктивности провода, внешний радиус ин­тегрирования R следует принять равным расстоянию между проводами d.

Если провода линии выполнены из неферромагнитного материала (Сu, Al) то m =1 и формула для индуктивности линии получит вид:

[ Гн / м ]

В схемах замещения трехфазных линий электропередачи учитывается ин­дуктивность одного провода (фазы), следовательно:

[ Гн / м ] – индуктивность каждого провода (фазы) трех­фаз­ной транспонированной ЛЭП на единицу длины, где – среднегеометрическое значение межосевых расстояний проводов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: