Математические модели и эквивалентные схемы реальных
Математические модели и эквивалентные схемы реальных полупроводниковых диодов
Полупроводниковые диоды
ЛЕКЦИЯ 2
План лекции:
2.2. Расчёт рабочей точки полупроводникового диода в статическом режиме
2.1.1. Модель реального p-n -перехода в статическом режиме работы
В реальном p-n -переходе в обеднённом слое имеют место как генерация, так и рекомбинация носителей зарядов, т.е. первое допущение, принятое для идеализированного p-n -перехода, не выполняется. В этом случае вольтамперную характеристику диода описывают формулой, в которую вводят коэффициент
, учитывающий неидеальность обеднённого слоя:

Так как нелинейными свойствами обладает обеднённый слой, то собственно неидеальность p-n -перехода можно выразить как

Кроме того, электрические сопротивления
и
нейтральных p - и n -областей хотя и малы относительно
, но достаточно велики по абсолютной величине и могут составлять единицы и даже десятки Ом. Поэтому ими пренебрегать нельзя, как это сделано в третьем допущении, а эквивалентная схема замещения реального полупроводникового диода (рис. 2.1) будет отличаться от схемы идеального диода.
Суммарное сопротивление
, учитывающее свойства нейтральных p - и n -областей, называют базовым сопротивлением диода.

Рис. 2.1. Структура (а) и эквивалентная схема реального полупроводникового диода с p-n -переходом (б)
На базовом сопротивлении при протекании тока имеет место падение напряжения
. Поэтому формула (2.1) может быть преобразована к виду

Вольтамперная характеристика полупроводникового диода с реальным p-n -переходом приведена на рис. 2.2.
С ростом прямого тока падение напряжения на базовой области диода может стать сравнимым с напряжением на p-n -переходе, т.е.
. При этом на ВАХ диода появится почти линейный участок. При дальнейшем увеличении прямого тока сопротивление
начинает уменьшаться из-за увеличения концентрации инжектированных в базу носителей заряда. ВАХ снова начнёт отклоняться от прямой линии. Это явление называют эффектом модуляции сопротивления базы. Однако данный эффект учитывать не будем.

Рис. 2.2. Вольтамперная характеристика полупроводникового диода (1 − с идеализированным p-n -переходом, 2 – с учётом неидеальности (
) обеднённого слоя, 3 – с реальным p-n -переходом)
Величины
и
непосредственно в справочных данных не приводят. Поэтому значения этих параметров надо вычислять по формуле (2.3), используя семейство характеристик
, приводимых в отдельных справочниках в виде графиков для конкретного типа диода.
2.1.2. Модели идеализированного и реального p-n -переходов в динамическом режиме работы
В динамическом режиме работы важную роль играют дифференциальное сопротивление и ёмкость p-n -перехода.
Дифференциальное сопротивление
представляет собой величину, обратную крутизне вольтамперной характеристики p-n -перехода.
Преобразуя формулу (2.1) для идеализированного p-n -перехода к виду

получаем выражение 
Здесь и в дальнейшем для простоты будем обозначать
как
.
Для реального p-n -перехода из преобразованной формулы (2.2) имеем

и выражение 
При
дифференциальное сопротивление больше статического, а при
имеет место обратное соотношение (рис. 2.3).

Рис. 2.3. Сравнительные характеристики статического и дифференциального сопротивлений полупроводникового диода
Границами обеднённого слоя являются равные по величине, но противоположные по знаку электрические заряды
ионов акцепторов и доноров. Между границами существует разность потенциалов
или потенциальный барьер. Поэтому по определению эта область p-n -перехода обладает ёмкостью, называемой барьерной:

Здесь
− значение барьерной ёмкости при
,
− контактная разность потенциалов, которую можно принять равной
,
для резкого p-n -перехода и
для плавного p-n -перехода.
Кроме того, в реальном p-n -переходе в p - и n -областях имеются движущиеся заряды, а на сопротивлениях
и
имеет место падение напряжений. Следовательно, существует ещё одна ёмкость, называемая диффузионной, так как заряды в p - и n -областях движутся благодаря диффузии.
Барьерная и диффузионная емкости составляют ёмкость реального p-n -перехода, причём
. Несмотря на то, что ёмкости образованы в разных частях p-n -перехода, в эквивалентной схеме они объединены в одну, параллельную реальному (неидеальному диоду) − рис. 2.4 а.

Рис. 2.4. Эквивалентные схемы реального p-n -перехода (а) и реального полупроводникового диода (б) в динамическом режиме работы (диапазон высоких частот)
Реальный диод как конструктивный элемент схемы обладает паразитной ёмкостью корпуса и паразитной индуктивностью выводов. В диапазоне высоких частот паразитной индуктивностью можно пренебречь (рис. 2.4 б), а в диапазоне сверхвысоких частот необходимо учитывать оба паразитных параметра (рис. 2.5).

Рис. 2.5. Эквивалентная схема реального полупроводникового диода в динамическом режиме работы (диапазон свч)
2.2. Расчёт рабочей точки полупроводникового диода в