Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Вычисление главного собственного вектора матрицы парного сравнения




Аксиоматические и вычислительные основы МАИ

В основе метода анализа иерархий лежат следующие аксиомы:

1. Обратная симметричность как основная характеристика парных сравнений. Для матрицы парных сравнений А = (аij) интенсивность предпочтения аi над аj обратна интенсивности предпочтения аj над аi.

2. Гомогенность сравниваемых элементов данного уровня иерархии.

3. Зависимость нижнего уровня от непосредственно примыкающего к нему высшего уровня.

Поскольку количество сравниваемых элементов, как правило, не превышает семи (психологический предел 7±2 элементов-объектов при одновременном сравнении), результатом суждений по каждому отдельному уровню иерархии является квадратная неотрицательная обратносимметрическая матрица порядка не более семи, диагональные элементы-числа которой равны единице, а остальные элементы подчинены равенству:

аij = 1/ аji. (1)

Вычислительные аспекты метода связаны с операциями над матрицами парных сравнений, или, иначе, суждений. В результате определенных операций над каждой из матриц суждений могут быть вычислены приоритеты сравниваемых элементов-объектов данного уровня иерархии и степень согласованности суждений (под которым понимается мера отклонения матрицы суждений от матрицы отношений, элементами-числами которой являются отношения весов сравниваемых элементов-объектов). Суммарные (общие) приоритеты нижних элементов-объектов могут быть найдены в результате выполнения арифметических действий (умножения) над соответствующими матрицами суждений для каждого элемента-объекта вышестоящих уровней. По аналогичным правилам, только над матрицами-столбцами, составленными из числовых мер согласованности для отдельных матриц суждений (также для каждого из вышестоящих элементов-объектов), вычисляется мера согласованности иерархии в целом.

Приближенное вычисление векторов приоритетов производится простой математической операцией: перемножением всех элементов каждой строки и извлечением корня соответствующей степени с последующей нормализацией полученных величин. Более точное вычисление основано на теореме, согласно которой нормализованные строчные суммы степеней примитивной матрицы в пределе дают искомый собственный вектор. Краткий вычислительный способ получения данного вектора сводится к возведению матрицы в степени, каждая из которых представляет собой квадрат предыдущей. Строчные суммы вычисляются и нормализуются. Вычисления прекращаются, когда разность между этими суммами для двух последовательных итераций становится меньше заданной величины.





Дата добавления: 2014-02-09; просмотров: 1117; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8631 - | 7463 - или читать все...

Читайте также:

 

34.204.191.0 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.055 сек.