Физические обоснования и методика проведения процедур ультразвуковой терапии

УЛЬТРАЗВУКОВАЯ ТЕРАПЕВТИЧЕСКАЯ АППАРАТУРА

УВЧ-терапия

Индуктотермия

Тепловой эффект в тканях организма может быть получен не только с помощью высокочастотного электрического тока (диатермия) или поля (УВЧ-терапия), но и при воздействии высокочастотным магнитным полем за счет явления электромагнитной индукции. Соответствующий метод называется индуктотермией.

Магнитное поле при индуктотермии создается с помощью катушки (индуктора), обтекаемой высокочастотным током.

При действии переменного магнитного поля в тканях организма на- водится электродвижущая сила индукции, вызывающая образование в них так называемых вихревых токов. На создаваемом этими токами тепловом эффекте и основан метод индуктотермии.

Эквивалентной электрической схемой индуктора (при проведении процедуры) является высокочастотный трансформатор, нагруженный на сопротивление, эквивалентное активному сопротивлению тканей орга- низма (рис. III—9, б).

УВЧ-терапия, наиболее распространенный электролечебный метод, представляет собой воздействие на ткани тела больного электрическим полем ультравысокой частоты.

Электрическое поле создается с помощью двух конденсаторных элек- тродов, соединенных проводами с генератором УВЧ колебаний. Подвер- гаемая воздействию часть тела помещается между электродами или при внутриполостных воздействиях один из электродов вводится в соот- ветствующую полость организма, а второй — располагается около по- верхности тела.

Важным преимуществом УВЧ-терапии по сравнению с диатермией является возможность проводить процедуры с зазорами между электродом и поверхностью тела. Это объясняется тем, что емкостное сопротивление участка цепи, образованного воздушным зазором (емкость Со, см. рис. III—13), в диапазоне УВЧ соизмеримо с сопротивлением тела больного (параллельно включенное сопротивление R и емкость С). На частотах же, применяемых в диатермии, сопротивление воздушных зазоров настолько велико, что ток в цепи в этом случае практически не проходит.

Наличие зазоров позволяет значительно уменьшить нежелательный нагрев поверхностных тканей, так как область около электродов, в которой имеется наибольшая концентрация силовых линий поля, располагается при этом вне тела больного. Весьма существенно также удобство проведения процедуры УВЧ-терапии, так как не требуется обеспечивать контакт между электродом и телом, необходимый при диатермии.

В тканях организма так же, как и в любом твердом, жидком или га- зообразном веществе, могут возникать механические (упругие) колеба- ния и волны. Механические колебания и волны при частоте ниже 16 Гц называют инфразвуковыми. Лечебное применение подобных колебаний можно видеть на примере вибрационного массажа. Механические колебания и волны в диапазоне частот от 16 Гц до 20 кГц называются звуковыми и воспринимаются ухом. Механические колебания и волны с частотой выше 20 кГц называются ультразвуковыми (или просто ультразвуком) и ухом не воспринимаются. Верхний предел спектра ультразвуковых колебаний не установлен. В настоящее время получают ультразвуковые колебания с частотой в несколько сот миллионов герц.

Источником ультразвуковых волн является какое-либо тело, нахо- дящееся в колебательном движении с соответствующей частотой. Для получения ультразвука частотой в несколько десятков килогерц обычно используется явление магнитострикции, которое заключается в том, что под действием переменного магнитного поля несколько изменяется дли- на расположенного вдоль поля стержня из ферромагнитного материала. Это периодическое удлинение и укорочение стержня приводит в колебательное движение прилежащие к концам стержня частицы среды, в которой образуется ультразвуковая волна. В медицине для целей терапии применяется ультразвук относительно высокой частоты порядка '800—3000 кГц, который получается с помощью так называемого обрат- ного пьезоэлектрического эффекта. Обратный пьезоэлектрический эф- фект состоит в том, что во многих кристаллах (кварц, сегнетова соль, титанат бария и др.) под действием электрического поля происходит некоторое взаимное смещение полярных групп атомов, составляющих основную структуру вещества, что вызывает соответствующее изменение размеров кристаллов.

Если к торцевым поверхностям пластинки, вырезанной определен- ным образом из кристалла кварца, с помощью электродов приложить переменное электрическое напряжение, то толщина пластинки будет поочередно уменьшаться и увеличиваться с частотой приложенного напряжения.

При уменьшении толщины пластинки в прилегающих слоях окружа- ющей среды образуется разрежение, а при увеличении — сгущение частиц среды.

Таким образом, в результате периодического изменения толщины пластинки, называемой пьезоэлектрическим преобразователем, в среде возникает ультразвуковая волна, распространяющаяся в направлении, перпендикулярном поверхности пластинки (рис. IV—1).

Аппарат для лечения ультразвуком состоит из генератора электри- ческих колебаний, к колебательному контуру которого подключен пьезо- электрический преобразователь. Преобразователь выносится в отдельную головку (излучатель), соединенную кабелем с аппаратом.

В последние годы в ультразвуковых терапевтических аппаратах ши- рокое применение получили пьезопреобразователи из керамики титаната бария. Керамика титаната бария представляет собой спеченные при высокой температуре мелкие кристаллы, т. е. имеет поликристаллическую структуру. Преимуществом ее по сравнению с кварцем является дешевизна и меньшая величина напряжения, необходимая для возбуждения ультразвуковых колебаний (напряжение на кварцевой пластинке при частоте 880 кГц и интенсивности 2 Вт/см2 превышает 1500 В, напряжение же на пластинке из керамики титаната бария при той же интенсивности не более 100 В). Это позволяет упростить конструкцию и схему аппарата, в частности, применить для питания головки гибкий низковольтный кабель.

Воздействие ультразвуком на ткани организма осуществляется обычно непосредственно путем приложения торцовой поверхности го- ловки к области, подлежащей воздействию (рис. IV — 3). Такой способ применяется при воздействии на относительно плоские поверхности мягких тканей тела и может быть как неподвижным (стабильным), так и подвижным (лабильным), при котором ультразвуковую головку плавно, массирующим движением перемещают по всей поверхности области воздействия.

Дозиметрия при ультразвуковой терапии заключается в установке заданной величины интенсивности ультразвука и длительности воздейст- вия. Интенсивность в Вт/см2 указывается, как правило, на шкале регулятора выходной мощности аппарата; обычные величины применяемых интенсивностей при подвижной методике составляют 0,5—1,5 Вт/см2, при неподвижной методике 0,05—0,3 Вт/см2.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: