С помощью анкеров

Расстояние между анкерами по длине трубопровода определяется расчётом из условия прочности:

, (6.35)

где R2 расчётное сопротивление металла трубы, определяемое по формуле (6.24); W – осевой момент сопротивления сечения трубы, см3; – положительная плавучесть 1 м трубопровода, н/м.

Подводные переходы

Трубопровод, расположенный в подводной траншее, подвергается воздействию различных нагрузок. Под устойчивым состоянием подводного трубопровода понимается такое состояние, при котором он будет находиться в покое при самой неблагоприятной комбинации силовых воздействий, стремящихся вывести его из устойчивого положения. Такими силами и воздействиями являются: выталкивающее усилие, определяемое по закону Архимеда, горизонтальная и вертикальная составляющие гидродинамического воздействия потока, силы упругости трубопровода, сжимающее или растягивающее продольное усилие, возникающее при протаскивании трубопровода или воздействие изменения его температурного режима и внутреннего давления. Условие устойчивости не засыпанного грунтом трубопровода на сдвиг записывается в виде:

, (6.37)

где Рх – горизонтальная составляющая силового воздействия потока; kус – коэффициент устойчивости на сдвиг, принимаемый равным 1,15; Б – вес балласта в воде; Q – вес единицы длины трубы с учётом изоляции, футеровки и продукта, заполняющего трубу; kув – коэффициент устойчивости на всплытие, принимаемый равным 1,1; А – выталкивающая Архимедова сила; Ру – вертикальная составляющая силового воздействия потока; qи – сила, возникающая вследствие упругого изгиба трубопровода по заданной кривой; qн – сила, обусловленная наличием продольной растягивающей силы в искривленном трубопроводе при его протаскивании по дну траншеи; fтр – коэффициент трения трубопровода о грунт, принимаемый равным .

Вес балласта на единицу длины трубопровода может быть установлен по выше приведенной формуле. Основные расчётные случаи:

1. Трубопровод прямолинейный, течение отсутствует

(6.38)

2. Трубопровод прямолинейный при наличии течения

(6.39)

3. Трубопровод искривлен по профилю перехода, течение отсутствует

(6.40)

4. Трубопровод искривлен по профилю перехода при наличии течения

(6.41)

5. Общий случай (при протаскивании)

. (6.42)

Если Б окажется отрицательным, то балластировка не требуется, при положительной Б трубопровод нужно балластировать.

В этих формулах сила qи определяется по формуле:

(6.43)

где EJ – жесткость трубы; f – стрелка прогиба искривленного участка трубопровода; lкр – длина криволинейного участка подводного перехода.

Сумма сил определится следующим образом:

, (6.44)

где Тр – расчётное тяговое усилие при протаскивании трубопровода (определяется методом последовательного приближения).

При строительстве подводных переходов выполняют значительный объём земляных работ, связанных с устройством траншей. Эти работы ведутся с помощью специальных землеройных машин. Береговые траншеи разрабатывают с помощью одноковшовых экскаваторов, оборудованных обратной лопатой. Русловая часть перехода разрабатывается земснарядами. Время окончания земляных работ должно, как правило, совпадать с временем окончания подготовки трубопровода к укладке в подводную траншею, чтобы не произошло заиливание траншей.

При глубине водоёмов не более 2¸3 м и незначительной их ширине (до 200 м) для устройства траншеи в русловой части можно использовать экскаватор, установленный на барже или понтоне соответствующей грузоподъёмности. Широко распространена на практике разработка подводных траншей канатно-скреперными установками.

Ширину подводных траншей по дну следует назначать с учётом режима водной преграды, методов разработки траншеи, необходимости водолазного обследования, способа укладки трубопровода. Крутизну откосов подводных траншей следует назначать в соответствии с требованиями СНиП III-42-80.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: