double arrow

Пример 2. Рассмотрим простейший случай нагружения ломанного стержня - двумя взаимноперпендикулярными сосредоточенными силами


Рассмотрим простейший случай нагружения ломанного стержня - двумя взаимноперпендикулярными сосредоточенными силами, приложенными на свободном конце (рис.2,а).

Выбираем скользящую систему координат (рис.2, б). Ось z всегда направлена вдоль продольной оси того или иного участка ломаного стержня, а при переходе с одного участка на другой координатные оси поворачиваются на 90 градусов, но никогда не вращаются вокруг оси z. Удобнее всего начинать выбор скользящей системы координат с горизонтального участка ломаного стержня, который параллелен плоскости чертежа или лежит в этой плоскости (участок ВС на рис.2, б).

На этом участке (а он аналогичен обычной балке) ось y направляется вертикально (вверх или вниз), ось z - вдоль продольной оси участка, а ось x - перпендикулярно плоскости yoz, после чего система координат передвигается на остальные участки ломаного стержня.

Построение эпюры .

Построение этой и всех последующих эпюр ведем от свободного конца. Правило знаков для остается таким же, как и для других систем, а именно: растяжению соответствует знак "+", сжатию - "-".

Участок АВ имеет нулевую продольную силу, так как перпендикулярны продольной оси этого участка:




.

Участок ВС растягивается силой :

.

Участок СД сжимается силой :

.

Построение эпюр и .

Поперечную силу формируют только те силы, которые параллельны оси x на данном участке, а поперечную силу - силы, параллельные оси y. Здесь также сохраняется обычное для Qправило знаков: , если внешняя сила, приложенная к отсеченной части, стремится повернуть рассматриваемое сечение по часовой стрелке и - в противоположном случае. С учетом сказанного в характерных сечениях имеем:

Рис.2

Построение эпюр .

Ординаты эпюр изгибающих моментов будем, как обычно, откладывать со стороны сжатых волокон, не указывая знаков, причем ориентировать эпюры нужно так, чтобы плоскость эпюры совпадала с плоскостью действия пары того изгибающего момента, для которого она построена. Иначе говоря, эпюра на всех участках ломаного стержня располагается в плоскости yoz, а эпюра - в плоскости xoz.

Начнем с построения эпюры . Здесь нас будет интересовать изгиб каждого участка в плоскости yoz (см. скользящую систему координат на рис.2, б) и, соответственно, плечо каждой действующей на отсеченную часть нагрузки нужно измерять в этой плоскости.

На участке АВ плоскость yoz - вертикальная плоскость, параллельная плоскости чертежа. В этой плоскости стержень АВ изгибается только силой , так как перпендикулярна плоскостиyoz :

;

(сжаты правые волокна).

На участке ВС плоскость yoz ориентирована так же, как и на участке АВ, причем, все точки ВС равноудалены от линии действия силы , поэтому:



(сжаты верхние волокна).

На участке СД плоскость yoz - вертикальная плоскость, перпендикулярная плоскости чертежа. В этой плоскости стержень СД изгибается только силой , так как перпендикулярна yoz ;все точки участка СД равноудалены (в рассматриваемой плоскости) от линии действия силы , следовательно:

(сжаты нижние волокна).

Рассуждая аналогичным образом, будем строить эпюру , но теперь нужно рассматривать изгиб каждого участка ломаного стержня в плоскости xoz.

На участке АВ плоскость xoz - вертикальная плоскость, перпендикулярная плоскости чертежа. В этой плоскости стержень АВ изгибается только силой , так как перпендикулярнаплоскости xoz:

;

(сжаты дальние от наблюдателя волокна).

На участке ВС плоскость xoz - горизонтальная плоскость. В этой плоскости сила приложена вдоль продольной оси стержня ВС и к изгибу привести не может, поэтому:

;

(сжаты дальние от наблюдателя волокна).

На участке СД плоскость xoz - это так же горизонтальная плоскость. Здесь к изгибу стержня СД приводят обе силы: плечо силы постоянно и равно b, а плечо силы равно нулю в сечении 5 и равно с в сечении 6:

(сжаты правые волокна).

Иногда при построении эпюр изгибающих моментов в ломанных стержнях возникают затруднения в определении участия той или иной нагрузки в изгибе стержня или в определении плеча той или иной нагрузки. В этих случаях всегда можно использовать простой, но эффективный прием: спроектировать конструкцию и действующие нагрузки на ту плоскость в которой изгибается стержень, переходя тем самым от пространственной конструкции к ее проекции, что позволяет легко определить плечи каждой из нагрузок и их "вклад" в изгиб рассматриваемого участка. Проследим использование этого приема например, при построении эпюры на участке СД (рис.2, а, б). На этом участке плоскость xoz, в которой нужно рассматривать изгиб стержня при построении - горизонтальная плоскость, следовательно, для реализации описываемого приема необходимо спроектировать конструкцию на горизонтальную плоскость, то есть изобразить вид сверху (рис.3).



Рис.3

При этом сила будет видна направленной вдоль стержня ВС, сила - перпендикулярно ВС, а стержень ВА проектируется в точку. Теперь совершенно очевидно, что все точки стержня СД равноудалены от линии действия силы , что приводит к постоянному моменту , а сила имеет нулевое плечо в сечении 5 и плечо, равное с, - в сечении 6:

В обоих сечениях сжаты правые волокна, то есть получен тот же результат, что и ранее, но в более наглядном виде.

  1. Косой (пространственный) изгиб. Нормальные напряжения. Нулевая линия. Эпюры напряжений (в пространстве, на плоскости, в простейшем виде). Касательные напряжения.






Сейчас читают про: