Коррозия стальной арматуры в бетоне

Защитный слой бетона в железобетонных конструкциях ограждает арматуру от внешней среды, но не изолирует ее полностью. Внешняя по отношению к железобетонным конструкциям среда воздействует прежде всего на бетон и лишь через него – на арматуру. По существу, средой, в которой находится арматура, является бетон.

Коррозия стальной арматуры происходит по электрохимическому механизму, для действия которого необходимы следующие условия:

наличие разности потенциалов между отдельными участками поверхности металла, т.е. электрохимическая неоднородность ее;

наличие электролитической связи между этими участками;

активное состояние поверхности на анодных участках, где металл растворяется;

наличие достаточного количества деполяризатора, в частности кислорода, необходимого для поглощения на катодных участках поверхности металла избыточных электронов.

Поскольку структура стали и контактного слоя бетона у ее поверхности неоднородны, то первое условие для арматуры в бетоне выполняется всегда. Так как бетон представляет собой капиллярно-пористое тело с активной и гидрофильной внутренней поверхностью, то второе и четвертое условия протекания коррозионного процесса в бетоне также выполняются. Следовательно, отсутствие коррозии стали в плотном бетоне связано с тем, что не выполняется третье условие.

Защита бетоном стальной арматуры основывается на пассивирующем действии щелочных сред. В щелочных растворах коррозия железа уменьшается, что объясняется образованием защитной пленки из гидрата окиси железа. С увеличением рН уменьшается растворимость гидроокиси и защитные свойства пленки повышаются.

При гидратации зерен портландцементного клинкера в значительном количестве образуется гидрат окиси кальция. Влага, содержащаяся в пористом теле цементного камня, твердевшего в нормальных условиях и не претерпевшего изменений по влиянием агрессивной среды, насыщена гидратом окиси кальция и имеет щелочную реакцию. Величина рН жидкой фазы такого бетона находится в пределах 12,2-13,0. В водном растворе с таким рН наступает практически полная пассивация поверхности стали.

Однако бетон представляет собой капиллярно-пористое тело. Основную массу пор и капилляров в бетоне составляют поры и капилляры цементного камня, образовавшиеся в результате испарения избыточной воды затворения. В процессе длительного твердения при полной гидратации зерен клинкера химически связанная вода составляет до 20-25% от массы цемента (в/ц = 0,2-0,25). Практически для получения удобоукладываемых смесей применяют в/ц не менее 0,4. Избыточная вода затворения образует, испаряясь, разветвленную сеть пор и капилляров - мелких в цементном камне, более крупных – на контакте цементного камня с зернами заполнителя. Капиллярно-пористое тело бетона в зависимости от плотности структуры обладает различной проницаемостью для газов, паров и жидкостей. Кроме того, в зависимости от влажностных условий окружающей среды бетон может иметь разную степень насыщения влагой.

При непосредственном длительном увлажнении бетона заполняются все поры, включая крупные, и арматура находится в условиях полного погружения в электролит. Аэрация поверхности стали в этом случае затруднена, т.к. поры закрыты влагой и в таких условиях арматура в обычном плотном бетоне не корродирует. Низкой относительной влажности окружающей среды соответствует малая степень заполнения влагой пор бетона. Несмотря на сравнительно легкий доступ кислорода воздуха к поверхности арматуры, на ней оказывается мало влаги для протекания процесса электрохимической коррозии стали. Поэтому при относительной влажности воздуха ниже 60% в обычном тяжелом бетоне коррозии арматуры не наблюдается. Коррозия арматуры в плотном бетоне обычно происходит при значениях относительной влажности воздуха 70-80%, либо при периодических увлажнениях конструкций. В этих условиях влажностное состояние бетона таково, что наряду с наличием достаточного количества влаги для работы коррозийных гальванических пар на поверхности арматуры имеется более или менее свободный доступ кислорода воздуха к ней через частично открытые поры и капилляры.

Чем больше пор в бетоне и чем они крупнее, тем более неоднородны условия на поверхности арматуры как из-за несплошного обволакивания арматуры цементным камнем и пленками щелочной влаги, так и вследствие разной степени аэрации ее поверхности. Чем больше пористость и неоднородность структуры бетона, тем выше опасность возникновения коррозии арматуры и скорость ее развития.

Другой особенностью бетона как среды для арматуры является то, что его свойства изменяются во времени. Пористый цементный камень, проницаемый для паров и газов, соприкасаясь с воздушной средой, может подвергаться интенсивной карбонизации. В процессе карбонизации углекислый газ воздуха проникает в поры и капилляры бетона, растворяется в поровой жидкости и реагирует с гидроокисью кальция, образуя слаборастворимый карбонат кальция. Карбонизация снижает щелочность содержащейся в бетоне влаги. Скорость распространения процесса карбонизации вглубь бетона зависит от его проницаемости и концентрации углекислоты воздуха.

Присутствующие в промышленной атмосфере кислые газы – сернистый газ, хлор, хлористый водород – также поглощаются бетоном и реагируют с гидратом окиси кальция, резко понижая щелочность бетона. Бетон, лишенный естественной щелочности, перестает оказывать защитное действие на стальную арматуру, и при определенном влажностном состоянии бетона арматура начинает корродировать, причем скорость коррозии будет зависеть от воздухопроницаемости бетона.

Другими факторами, влияющими на состояние арматуры в бетоне, кроме состава и влажности окружающей среды, являются: состояние поверхности и степень напряжения арматуры; структура, состав бетона и толщина защитного слоя; вид вяжущего и режим твердения бетона; различные добавки, вводимые в бетон в качестве пластификаторов и ускорителей твердения; наличие трещин в бетоне защитного слоя.

В трещинах с малым раскрытием скорость коррозии арматуры становится меньше скорости коррозии незащищенной стали. Это объясняется тем, что растущий в стесненных условиях слой ржавчины сильно уплотняется и начинает существенно ограничивать как анодный, так и катодный процессы на поверхности арматуры в зоне трещин. Этого не происходит при коррозии незащищенной арматуры, когда образуется рыхлая ржавчина. В широких трещинах и при специфической агрессивности среды это затухание коррозии может носить временный характер, так как прочность бетона на растяжение в защитном слое может оказаться недостаточной для восприятия растущего давления со стороны слоя ржавчины, произойдет раскалывание и отпадение защитного слоя бетона с последующим ускорением коррозии арматуры и распространением ее вдоль стержня. Практически такая опасность тем меньше, чем выше прочность бетона и толще защитный слой у арматуры.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: