1)
одномерная случайная величина – статистический вариант метода прямоугольников.
В качестве текущего узла xi берется случайное число, равномерно распределенное на интервале интегрирования [ a, b ]. Проведя N вычислений, значение интеграла определим по следующей формуле:
. Для R можно утверждать хотя бы ~
.
2) двумерная случайная величина – оценка площадей.
Рассматриваются две равномерно распределенных случайных величины x i и y i, которые можно рассматривать как координаты точки в двумерном пространстве. За приближенное значение интеграла принимается количества точек S, попавших под кривую y = f (x), к общему числу испытаний N, т.е.
.
И первый, и второй случай легко обобщаются на кратные интегралы.






