Различают метод левых, правых и средних прямоугольников. Суть метода ясна из рисунка. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени – отрезком, параллельным оси абсцисс.

Выведем формулу метода прямоугольников из анализа разложения функции f(x) в ряд Тейлора вблизи некоторой точки x = x i.
…
Рассмотрим диапазон интегрирования от x i до x i + h, где h – шаг интегрирования.
Вычислим
…=
=
=
. Получили формулу правых (или левых) прямоугольников и априорную оценку погрешности r на отдельном шаге интегрирования. Основной критерий, по которому судят о точности алгоритма – степень при величине шага в формуле априорной оценки погрешности.
В случае равного шага h на всем диапазоне интегрирования общая формула имеет вид
.
Здесь n – число разбиений интервала интегрирования,
. Для справедливости существования этой оценки необходимо существование непрерывной f’ (x).
Метод средних прямоугольников. Здесь на каждом интервале значение функции считается в точке
, то есть
. Разложение функции в ряд Тейлора показывает, что в случае средних прямоугольников точность метода существенно выше:
.






