Гетеропереходы первого и второго типов

Рассмотрим одиночный гетеропереход между двумя полупроводни­ками A и B, имеющими в общем случае различную ширину запре­щенной зоны и . Принято различать гетеропереходы 1-го и 2-го типов, в зависимости от расположения на зонной диаграмме дна зоны проводимости и потолка валентной зоны материала А по отношению к аналогичным величинам материала В. Взаимное расположение этих уровней энергии определяется как положением их относительно уровня энергии вакуума, общего для обоих материалов, так и соотношением между и . На рис. 1.1 представлены зонные диаграммы гетеро- переходов 1-го типа для случая, когда разрыв зоны проводимости D ЕС больше разрыва валентной зоны D Е u (а) и наоборот D ЕС < D Е u (б).

Рис. 1.1. Гетеропереходы первого типа: а — D ЕС >D Е u, б — D ЕС >D Е u, D ЕС < D Е u, и - энергетические уровни, соответствующие дну зоны проводимости и потолку валентной зоны материалов А и В, D Ес ,u - разрывы зон на интерфейсе.

В обоих случаях запрещенная зона материала В располагается внутри запрещенной зоны материала А, а движение электронов и дырок из материала В в материал А ограничено потенциальными барьерами, высота которых соответственно равна D ЕС и D Е u. В таких гетероструктурах электроны и дырки локализуются в одной области пространства — в слое В.

Зонная диаграмма гетеропереходов 2-го типа представлена на рис. 1.2. Для гетеропереходов этого типа характерно, что запрещенные зоны материалов А и В либо частично перекрываются, либо вообще не перекрываются.

Рис. 1.2. Гетеропереходы второго типа: а, б — с перекрывающимися, в, г — с неперекрывающимися запрещенными зонами (а, в - D ЕС >D Е u, б, г – D ЕС < D Е u).

В первом случае (рис. 1.2,а и 1.2,б) электроны или дырки локализуются в различных областях пространства (соот­ветственно в слое В и А (рис. 1.2,а) или в А и В (рис. 1.2,б)). В случае гетеропереходов с неперекрывающимися запрещенными зо­нами электроны валентной зоны одного материала будут беспрепят­ственно переходить в зону проводимости другого материала (из А-слоя в В-слой на рис. 1.2,в, из В-слоя в А-слой на рис. 1.2 ,г). Возникающее в результате этого электростатическое поле исказит зонную диаграмму, а сам гетеропереход будет эквивалентен гетеропереходу полуметалл-полупроводник.

Известно, что энергия носителей заряда в объемном полупроводни­ке характеризуется тремя непрерывными квантовыми числами (компо­нентами волнового вектора k) k 1, k 2, k 3 и в простейшем случае имеет вид

.

Ограничение движения носителей заряда в направлении хi, (i = 1,2,3) приводит к трансформации непрерывного квантового числа ki в дискретное квантовое число ni (ni = 1, 2, 3...) 1), нумерующее энергию размерного квантования. В остальных направлениях движение остается инфинитным и будет характеризоваться оставшимися компо­нентами волнового вектора.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: