Теплотехнические характеристики металла

Металл Удельная теплоемкость кДж/(кг∙К) Потность, кг/м3 Т кр, К
Сталь 3 0,44 + 0,0048(Т ср - 273)    
Алюминиевые сплавы типа АМц 0,88    

IV. Среднее значение коэффициента удельной теплоемкости С ср находится с учетом средней температуры металла:

, (4.3.5.)

где Со - начальное значение коэффициента удельной теплоемкости кДж/(кг∙К); k -коэффициент пропорциональности.

V. Рассчитывается значение параметра β:

, (4.3.6.)

где γ - плотность металла, кг/м3.

VI. По номограмме (рис. 3.1.)для известных значений Т кр и βопределяется значение τ.
VII. Устанавливается предел огнестойкости конструкции

(4.3.7.)

Для оценки предела огнестойкости незащищённых металлических конструкций может быть использована зависимость, полученная д.т.н. проф. Беликовым А.С.:

(4.3.8.)

где τ - предел огнестойкости, ч; δпр – приведенная толщина металла, см.

Представленная зависимость наиболее полно описывает экспериментальные данные (отклонения не превышают 3,5%).

Расчет прогрева теплоизолированных стальных конструкций (теплотехническая задача) производится по формуле:

, (4.3.9.)

где Т м (τ) - температура металла, К; Т пов(τ) - температура поверхности изоляции, К; Т0 - начальная температура конструкции, К; Ө - безразмерный параметр, который определяется по номограмме.


Рис. 4.3.1. Номограмма для расчета огнестойкости незащищенных металлических конструкций

Рассмотрим последовательность вычисления для теплоизолированных конструкций.

1. Вычисляем приведенную толщину δx(y) следующим образом:

а) для неограниченной теплоизолированной пластины δх(у) равна толщине металлической пластины;

б) для теплоизолированных стержней прямоугольного сечения:

(4.3.10.)

где а и b — размеры поперечного сечения конструкции, м; δпр,х и δпр,у — приведенные толщины пластин по осям х и у:

(4.3.11.)

(4.3.12.)

где См,00 — начальное значение коэффициента удельной теплоемкости металла и теплоизоляции; δх, δу —толщина стенок сечения, м; δ0 —толщина теплоизоляционного слоя, м;

в) для теплоизолированных стержней круглого сечения:

(4.3.13.)

где dн — наружный диаметр сечения, м; δм — толщина стенки сечения, м;

г) для теплоизолированных стержней двутаврового сечения приведенная толщина полки:

(4.3.14.)

где l — толщина полки, м;

Рис. 4.3.2. Распределение относительной избыточной температуры в теплоизолированной металлической конструкции

Стенки:

(4.3.15.)

где d —толщина стенки, м; h — высота стенки, м.

2. Рассчитываем плотность сухого γ с и влажного γв материала теплоизоляционного слоя:

(4.3.16.)

где Р — весовая влажность сухого материала, %.

3. Выбираем для дальнейшего расчета произвольно момент времени.

4. По рис. 3.3. с учетом выбранного интервала времени и плотности материала определяем значение температуры поверхности Т пов и среднее значение температуры Тср для каждого вида материала:

, (4.3.17.)

5. Оцениваем среднее значение теплофизических характеристик материалов:

(4.3.18.)

где λср - средний коэффициент теплопроводности сухого материала Вт/(м∙К); Сср - средний коэффициент удельной теплоемкости сухого материала, кДж/(кг∙К). Величина С ср опре­деляется по формуле (3.5.).

6. Рассчитываем число Фурье:

(4.3.19.)

7. Находим значение параметра N:

(4.3.20.)

8. Для рассчитанных F 0 и N определяем значение безразмерного параметра Ө по рис. 3.2.

9. По формуле (4.3.19.) для заданного промежутка времени устанавливаем температуру металла.

Расчет по пунктам 3—9 повторяется с учетом новых интервалов времени до того момента, когда температура конструкции достигнет критического значения Т кр. Следовательно, время достижения критической температуры и будет пределом ее огнестойкости.

Предложенная методика для оценки предела огнестойкости конструкций проста, требует малых затрат времени и дает возможность разработать меры профилактики.

 
 


Рис.4.3.3. Изменение температуры поверхности конструкций из материалов с различной плотностью.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: