Ответ: Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов. Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения. При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи.
Схема включения вольтметра с трансформатором напряжения изображена на рис. 8.31. Трансформатор напряжения устроен так же, как и обычный трансформатор. Для него справедливы соотношения
U 1 | ≈ | E 1 | = | w 1 | = KU, откуда U 2 ≈ U 1 | w 2 |
U 2 | E 2 | w 2 | w 1 |
Если трансформатор напряжения выполнен как обычный трансформатор, то возникают значительные погрешности измерения из-за того, что U 1 ≠ E 1 и U 2 ≠ Е 2 по причине падения напряжения в его обмотках. Для повышения точности измерения необходимо уменьшить падение напряжения в обмотках трансформатора. Достигается это следующим образом. К вторичной обмотке трансформатора напряжения подключаются обмотки вольтметров, обмотки напряжения ваттметров и счетчиков, обмотки реле защиты. Указанные обмотки обладают значительными сопротивлениями, и если их количество ограничено, то трансформатор работает практически в режиме холостого хода. Падение напряжения во вторичной обмотке столь мало, что U 2 = Е 2. Так как I 2 ≈ 0, падение напряжения в первичной обмотке обусловлено только током холостого хода
I 10 = √ I p2 + I a2.
Таким образом, повышение точности измерений сводится к уменьшению тока холостого хода трансформатора. Реактивная составляющая тока холостого хода I р определяется из уравнения I p w 1 = H ст l ст + H 0 l 0. Ее уменьшение достигается тем, что магнитопровод выполняется из высококачественной электротехнической стали с высокой магнитной проницаемостью μ а ст. Кроме того, трансформатор рассчитывается для работы с малым значением амплитуды магнитной индукции Вm — около 0,4 — 0,8 Тл. Все это существенно снижает напряженность магнитного поля в стали Н ст = В /μ а ст и в воздушном зазоре Н 0 = В /μ0 магнитопровода и, естественно, снижает реактивную составляющую тока холостого хода. С той же целью магнитопровод трансформатора выполняется с минимальным значением воздушного зазора, что достигается высококачественной обработкой пластин и сборкой магнитопровода. Активная составляющая I а обусловлена потерями в стали магнитопровода. Ее уменьшение достигается тем, что для магнитопровода используется сталь с малыми значениями удельных потерь Δ P 10, Δ P 15 и, как уже было сказано, трансформатор работает при малых значениях Вm.
При выполнении указанных выше условий вторичное напряжение трансформатора пропорционально первичному:
U 2 = U 1 | w 2 | = | U 1 | . |
w 1 | КU |
Однако абсолютной точности получить невозможно, и трансформаторы напряжения имеют определенную погрешность, так же как и измерительные приборы. По точности измерений трансформаторы делятся на классы точности: 0,2; 0,5; 1 и 3. Трансформаторы напряжения бывают однофазные и трехфазные. На паспорте трансформатора указываются номинальная мощность, номинальное первичное U 1ном и вторичное U 2ном напряжения, класс точности. Вторичное напряжение (у трехфазных линейное) всех трансформаторов 100 В. Начало первичной обмотки обозначено буквой А, конец — X, начало — вторичной а, конец — х.
Рис. 8.31. Схема включения вольтметра с трансформатором напряжения |
Схема включения амперметра с трансформатором тока изображена на рис. 8.32, в. Первичная обмотка трансформатора включена в электрическую цепь, и ток в ней определяется сопротивлением приемников и, естественно, не зависит от тока во вторичной цепи, где включен амперметр. Обмотка имеет несколько витков и выполнена из провода значительного сечения (соответственно току цепи). К выводам вторичной обмотки, имеющей значительно большее количество витков, чем первичная, и рассчитанной на ток 5 А, подключаются последовательно обмотки амперметра, токовые обмотки ваттметра, счетчика, реле защиты. Сопротивление обмоток незначительное, и если их количество невелико, то трансформатор работает в режиме короткого замыкания. Из уравнения МДС:
I 1 w 1 + I 2 w 2 = I 10 w 1 следует, что если бы намагничивающий ток I 10 был равен нулю, то:
I 1 w 1 = I 2 w 2 и I 2 = I 1 | w 1 | = I 1 KI. |
w 2 |
Так как трансформатор тока работает в режиме короткого замыкания, то для создания тока во вторичной цепи 5 А требуется небольшая ЭДС и, следовательно, небольшой магнитный поток и создающий его намагничивающий ток. Однако для повышения точности измерения принимаются дополнительные меры к его снижению. Эти меры аналогичны тем, что были рассмотрены применительно к трансформатору напряжения, но в этом случае достаточная точность измерений при выполнении рассмотренных выше мер получается, если амплитуда магнитной индукции для трансформатора тока выбирается в пределах 0,06 — 0,1 Тл.
Рис. 8.32. Трансформатор тока (а), обозначение трансформатора тока (б), схема включения амперметра с трансформатором тока (в) |
Необходимо отметить, что точность измерений существенно снижается при возрастании сопротивления вторичной цепи трансформатора. Действительно, для создания того же тока во вторичной обмотке потребуются большие ЭДС и, следовательно, магнитный поток и намагничивающий ток. Возросший намагничивающий ток нарушит пропорциональность между первичным и вторичным токами. Обрыв вторичной цепи представляет серьезную опасность для обслуживающего персонала вследствие появления на вторичной обмотке большого напряжения и возможности выхода из строя трансформатора.
Рис. 8.33. К пояснению работы трансформатора тока при разомкнутой вторичной обмотке |
Это объясняется тем, что МДС первичной обмотки определяется током приемников энергии и не зависит от того, замкнута или разомкнута вторичная обмотка. Когда вторичная обмотка замкнута, она создает МДС I 2 w 2, направленную против I 1 w 1, и результирующая МДС, которая практически равна их разности, будет создавать магнитную индукцию всего в 0,06 — 0,1 Тл (точка а, рис. 8.33). При разомкнутой вторичной обмотке (I 2 w 2 = 0) магнитная индукция возрастает до значений 1,5 — 2,0 Тл, что соответствует точке б. Магнитная индукция возрастает в 10 — 20 раз, что приведет к появлению большого напряжения на вторичной обмотке и резкому возрастанию (в 100 — 400 раз) потерь в магнитопроводе. Для предотвращения отмеченных неприятностей перед тем как отсоединить на ремонт или проверку измерительный прибор, вторичную обмотку трансформатора тока необходимо замкнуть накоротко перемычкой.
В паспорте трансформатора тока указываются номинальные токи первичной I 1ном и вторичной I 2ном (он обычно 5 А) обмоток, класс точности, максимальное значение сопротивления и минимальное значение коэффициента мощности обмоток приборов, включаемых во вторичную обмотку, при которых гарантируется указанный класс точности, а также напряжение, на которое рассчитана его изоляция. Начало первичной обмотки трансформатора тока обозначается буквой Л 1, конец — буквой Л 2, вторичной: начало — И 1, конец — И 2.
Рис 8.34 Схема включения амперметра, вольтметра, ваттметра с трансформаторами напряжения и тока |
Необходимо отметить, что кроме погрешности измерения по коэффициенту трансформации (по модулю измеряемой величины) есть и погрешность по углу по той же причине: падение напряжения в обмотках. Погрешность объясняется тем, что направление вектора приведенного вторичного напряжения не совпадает с направлением вектора первичного напряжения трансформатора напряжения и направление вектора приведенного тока вторичной обмотки не совпадает с направлением вектора первичного тока трансформатора. Угловая погрешность составляет всего несколько минут и проявляет себя только при измерении мощности, энергии и фазы. На рис 8.34 изображена схема включения измерительных приборов и измерительных трансформаторов для измерения тока, напряжения и активной мощности. Для защиты обслуживающего персонала от действия высокого напряжения в случае пробоя изоляции между обмотками или высоковольтной обмоткой и корпусом корпус и один конец вторичной обмотки измерительных трансформаторов надежно заземляются. Цена деления измерительных приборов определяется следующим образом.