Временем срабатывания

Длительность включения te равна суммарному времени прохождения сигнала в инверторах.

Рис. 4.4 иллюстрирует прохождение сигнала. Длительность выходного импульса равна задержке в цепочке инверторов и задается соответствующим нечетным числом логических элементов. Как видно из рис. 4.4, в этом одновибраторе пусковой сигнал должен сохраняться, пока длится выходной импульс.

Рис. 4.4. Временная диаграмма сигнала;

t1 = время прохождения сигнала для

логического элемента И.

Задерживающая цепочка становится слишком громоздкой, когда требуются большие длительности включения. В таком случае выгоднее применять интегральные одновибраторы, длительность включения которых задается внешней RC-цепочкой.

Если на рис. 4.3 элемент И заменить элементом Исключающее ИЛИ–НЕ, получим одновибратор, который выдает импульсы при прохождении фронта каждого входного сигнала. В стационарной ситуации входы элемента Исключающее ИЛИ–НЕ комплементарны и выходной сигнал равен нулю. При изменении состояния входной переменной x на этом элементе благодаря задержке за счет инверторов возникают одинаковые входные сигналы. В указанный период выходной сигнал равен единице.

4.2.2. Мультивибратор

Простой мультивибратор из двух инверторов представлен на рис. 4.5. Пусть сигнал x пребывает в состоянии 1, а y – в состоянии 0. Тогда конденсатор C будет заряжаться через резистор R, пока потенциал V не превысит уровень порога переключения VS логического элемента G1. Тогда x перейдет в состояние 0, а y – в состояние 1. При этом потенциал V скачком возрастет на амплитуду выходного сигнала. Наконец, конденсатор станет разряжаться через резистор R, пока вновь не достигнет порога переключения.

Рис. 4.5. Мультивибратор с двумя инверторами; период колебаний T = 2…3 RC.

Временная диаграмма напряжения приведена на рис. 4.6. Если порог переключения лежит посредине между выходными уровнями, период колебаний составляет

T = 2RC ln 3 ≈ 2,2RC.

Рис. 4.6. Временная диаграмма сигнала;

порог переключения VS

В практических схемах это условие обычно выполняется лишь приближенно. Отклонение от указанного выражения связано с тем, что вход логического элемента G1 нагружает RC-цепочку. У маломощных ТТЛ схем с барьером Шоттки диапазон допустимых значений сопротивления R невелик: R = 1…3,9 кОм. Применение КМОП элементов позволяет использовать высокоомные резисторы R, что обеспечивает сравнительно длительные периоды колебаний. Однако в этом случае на входе логического элемента G1 приходится включать гасящий резистор с тем, чтобы нагрузка RC-цепочки оставалась высокоомной. Проблема состоит в том, что защитная цепь на входе G1 начинает проводить ток, как только V окажется выше напряжения питания или ниже потенциала земли. На рис. 4.7 представлена схема, свободная от указанной проблемы. Конденсатор C через сопротивление резистора R заряжается до уровня выключения триггера Шмитта, а затем вновь разряжается до уровня его включения. По диаграмме на рис. 4.7 видно, что напряжение на конденсаторе колеблется между указанными уровнями. В случае маломощных ТТЛ схем с барьером Шоттки сопротивление R должно быть достаточно малым, чтобы не препятствовать протеканию входного тока ниже уровня включения. Подходящие номиналы лежат в интервале от 220 до 680 Ом. У КМОП триггеров Шмитта данное ограничение отсутствует.

Рис. 4.7. Мультивибратор с триггером Шмита и временная диаграмма его работы; период колебаний: T = 1,4…1,8 RC (ТТЛ); T = 0,5…1 RC (КМОП с питанием 5 В).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: