Типы тиристоров

Тринисторы (обычно именно их называют тиристорами).

В динисторах включение производится путем повышения анодного напряжения до значения UA ≥ UA вкл, при котором ток через прибор резко повышается. Это является его небольшим недостатком, т.к. включение производится большим напряжением, при протекании в цепи очень больших токов, что свидетельствует о малой эффективности управления. Поэтому динисторы получили малое распространение.

Однако включить тиристор можно и другим образом, повышая ток только в одном из двух эквивалентных транзисторов путем подачи дополнительного управляющего напряжения на один из эквивалентных переходов. Такой тиристор является трёхэлектродным и называется тринистором (рис. 7)

На одной из внутренних областей тиристора делается вывод, на который подается управляющее прямое напряжение. С повышением управляющего прямого напряжения при неизменном напряжении между анодом и катодом ток соответствующего эквивалентного перехода растет, повышается коэффициент передачи тока α этого тиристора, и можно добиться, чтобы тиристор открылся при напряжении UA < UA вкл.

Рис. 7.- Структура тринистора Рис. 8. – ВАХ тринистора

Таким образом, условие α1 + α2 = 1 выполняется при напряжениях UA < UA вкл за счет изменения управляющего напряжения. Чем больше Iупр, тем при меньшем напряжении UA произойдет переключение тиристора (рис. 8). Для управления включением требуются незначительные ток и напряжение, т.е. управление производится с очень небольшой затратой мощности, но при этом в анодной цепи могут протекать токи в десятки и сотни ампер при напряжениях в тысячи вольт.

Таким образом, тринистор является прибором, обладающим очень эффективным управлением.

Следует отметить, что после того как управляющий ток обеспечил отпирание тиристора, дальнейшее управление током за счет изменения управляющего напряжения не происходит. Условное обозначение тиристора (тринистора) показано на рис. 9.

Рис. 9. - Условное обозначение тринистора

Симметричные тиристоры.

В некоторых схемах регулировки переменного тока требуются тиристоры, которые можно включать как в прямом, так и в обратном направлении. Этому требованию отвечают симметричные тиристоры. Эти тиристоры имеют одинаковые ВАХи при различных полярностях приложенного напряжения.

В симметричном тиристоре (рис.10) имеется пять областей и четыре p – n – перехода. Области N3 и P2 подключены к катоду, а N1 и P1 – к аноду. При полярности напряжения плюсом на Р1 и минусом на N3, переходы П2 и П4 находятся под прямым напряжением, а П3 – под обратным. p – n – переход П1 находится под обратным напряжением, но он зашунтирован сопротивлением области Р1. В результате в цепи включен тиристор с обычной четырехслойной структурой P1N2P2N3 с плюсом напряжения на крайней области Р1 и минусом на N3. В такой структуре будут наблюдаться те же процессы, которые были рассмотрены ранее.

При смене полярности – подачи напряжения «+» на Р2 и «–» на N1 – переходы П1 и П3 окажутся под прямым напряжением, а N2 – под обратным. В этом случае переход П4 также окажется под обратным напряжением, но он зашунтирован сопротивлением области Р2. Напомним, что ток идет по пути наименьшего сопротивления, поэтому он проходит через область Р2, а не через очень большое сопротивление перехода П4.

Таким образом, и в этом случае получена такая же четырехслойная структура P2N2P1N1, в которой произойдут процессы, характерные для тиристора, включенного под прямое напряжение. Обычно в такой структуре доб – ся управляющий электрод, как и в тринисторе.

Управляющий симметричный тринистор получил название – симистор. Его ВАХ показана на рис.11, а условное обозначение – на рис. 12.

Рис. 10. - Структурная схема симметричного тиристора Рис. 12. - Условное обозначение симистора Рис. 11. - ВАХ симистора

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: