Квадратурная амплитудная модуляция

Требования к точности характеристик формирующих и полосовых фильтров тем выше, чем больше число позиций в модулированном сигнале.

При квадратурной амплитудной модуляции (Quadrature Ampli­tude Modulation, QAM) передаваемый сигнал модулирует и ампли­туду, и фазу несущего колебания. Это происходит одновременно и независимо.

Можно сказать, что если немодулированная несущая имеет вид

u (t) = Um cosω t, (3.4)

то в результате квадратурной амплитудной модуляции такой несу­щей сигналами uI (Inphase) и uQ (Quadrature) передаваемый сигнал будет представлен

u (t) = uI cosω t + uQ sinω t. (3.5)

Представление сигналов в виде суммы квадратурных составляющих подсказывает простой способ их формирования в квадратурном модуляторе. Квадратурный модулятор является универсальным устройством, которое может быть использовано для получения сигнала линейно-модулированной несущей с двумя боковыми полосами, включая такие виды, как фазовая и амплитудно-фазовая модуляции.

Структурная схема квадратурного модулятора показана на рисунке 3.9.

Рисунок 3.9 — Структурная схема квадратурного модулятора

Основу модулятора составляют два балансных модулятора и сумматор ВЧ сигналов, на выходе которого образуется квадратурномодулированный сигнал u (t). Несущие, поступающие на опорные входы балансных модуляторов, имеют взаимный фазовый сдвиг 90°, то есть находятся в квадратуре. Входные модулирующие сигналы uI и uQ являются квантованными по уровню и дискретными во времени. Длительность их тактового интервала определяется частотой тактирования. Таким образом, входные сигналы — это сигналы с амплитудно-импульсной модуляцией (АИМ) в основной полосе. Они могут поступать на сигнальные входы балансных модуляторов непосредственно или через низкочастотные формирующие фильтры, как показано на рисунке 3.9. В первом случае формируется нефильтрованный выходной ВЧ сигнал с частотными составляющими, выходящими за пределы необходимой полосы. При НЧ фильтрации модулирующих сигналов модулированный сигнал также локализуется по спектру и согласуется с выделенной полосой частот канала.

Получение различных видов модуляции с помощью квадратурного модулятора обеспечивается подачей на его входы биполярных АИМ сигналов uI и uQ, квантованных на различное число уровней и симметричных относительно нуля. В «вырожденном» случае, то есть когда на один из входов подан ноль напряжения, а на другой двоичная последовательность с относительными уровнями ±1, работает только один канал, и модулятор превращается из квадратурного в обычный балансный. На выходе формируется одномерный сигнал фазовой модуляции с изменением фазы на 180°, переносящий 1 бит/символ. При подаче двоичных АИМ сигналов в оба канала модулятора по каждому из каналов передается 1 бит/символ, а общая скорость передачи составляет 2 бит/символ. В результате образуется сигнал 4- PSK, обычно называемый квадратурной фазовой модуляцией (QPSK), но формально относящейся к широкому классу квадратурной амплитудно-фазовой модуляции (QAM).

Такой вид модуляции можно пояснить с помощью векторной диа­граммы, на которой в декартовой системе координат с вертикальной осью Q и горизонтальной осью I изображают положение конца векто­ра промодулированного сигнала. Векторная диаграмма сигнала для случая четырехпозиционной квадратурной амплитудной модуляции, или, как ее обозначают, 4- QAM, показана на рисунке 3.10.

Ка­ждая точка характеризуется своим сочетанием амплитуды и фазы сигнала, поэтому соответствующий каждой точке символ переносит информацию в количестве

I = log2 N, (3.6)

где I — число битов информации, передаваемое каждым символом;

N — число возможных «позиций» вектора или точек на векторной диаграмме.

Рисунок 3.10 — Векторная диаграмма сигнала при различных видах квадратурной амплитудной модуляции

При модуляции 4- QAM амплитуда сиг­нала не меняется и такой случай полностью эквивалентен четырехпозиционной фазовой манипуляции (4- PSK или QPSK).

Векторные диаграммы сигнала для способов модуляции 4- QAM, 16- QAM, 32- QAM и 64- QAM также показаны на рисунке 3.10.

Сигнальное созвездие 16- QАМ образуется ансамблем из 16 сигналов, различающихся между собой по фазе и амплитуде. В кабельных системах распределении ТВ сигналов наряду с 16- QАМ регламентируется применение форматов 64- QАМ и даже 256- QAМ, созвездия которой образованы 256 позициями фазы и амплитуды.

Рассмотрим принципы построения модема с квадратурной модуляцией на примере системы цифрового вещании с 16- QАМ. Структурные схемы модулятора 16-QАМ и демодулятора 16-QАМ показаны на рисунке 3.11.

Входной поток данных вначале подвергается необходимой цифровой обработке в процессоре данных: выделению тактовой частоты, скремблированию, дифференциальному кодированию, последовательно-параллельному преобразованию. Так как модуляция 16- QАМ обеспечивает удельную скорость передачи 4 бит/(с∙Гц), то для последующей модуляции поток данных в ходе его цифровой обработки разделяется на 4 подпотока с соответственно сниженными скоростями. Затем производится цифро-аналоговое преобразование двух двоичных подпотоков в один четырехуровневый с одновременным формированием их спектра в ЦТФ, где импульсам придается сглаженная форма. Четырехуровневые сигналы в каналах I и Q управляют работой балансных модуляторов, выходные сигналы которых складываются, образуя сигнал 16- QАМ с двумя полосами и подавленной несущей. На балансные модуляторы несущая поступает со сдвигом π/2, то есть в квадратуре. Выходной сигнал модулятора на промежуточной частоте несущей проходит через полосовой фильтр, ограничивающий внеполосные излучения, и может быть конвертирован в полосу любого вещательного канала.

а)

б)

Рисунок 3.11 — Структурные схемы модулятора 16- QАМ (а) и

демодулятора 16- QАМ (б)

В демодуляторе имеется аналогичная пара балансных модуляторов и блоки обратного преобразования из четырехуровневых в двоичные сигналы с последующей обработкой данных. Принципиально сложными узлами являются схемы восстановления подавленной несущей и тактовой синхронизации. Обе эти операции выполняются на основе анализа структуры принимаемого сигнала в синфазном и квадратурном каналах. Формирующие ФНЧ на выходах балансных модуляторов доводят спектр сигнала до требуемого по Найквисту и ослабляют шумы и помехи.

Разумеется, применение многопозиционной QAM способствует передаче большего количества информации, однако в реальных усло­виях, при наличии помех, на приемной стороне возможно ошибочное определение амплитуды и фазы передаваемого сигнала. Это обстоя­тельство и ограничивает количество информации, передаваемое од­ним символом. Тем не менее, основное преимущество QAM перед другими видами модуляции — в ее хорошей помехозащищенности.

Сигналы квадратурной амплитудной модуляции широко используются при передаче сигналов телевидения по радиорелейным и кабельным линиям, в системах наземного цифрового телевизионного вещания.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: