Спектры сигналов с угловой модуляцией

Формулу (15.2.4) однотональной модуляции можно преобразовать к виду:

u(t) = Umcos(b×sin(Wt)) cos(wot) - Umsin(b×sin(Wt)) sin(wot). (15.2.6)

При малых значениях индекса угловой модуляции (b<<1, узкополосная модуляция) имеют место приближенные равенства:

cos(b×sin Wt)» 1, sin(b×sin Wt)» b×sin wot.

При их использовании в (15.2.6), получаем:

u(t)» Umcos wot + (bUm/2) cos[(wo+W)t] + (-bUm/2) cos[(wo-W)t]. (15.2.7)

Сравнение данного выражения с формулой АМ – сигнала (15.1.4) позволяет сделать вывод, что амплитудные спектры однотональных ФМ и ЧМ сигналов при b<<1 практически аналогичны АМ сигналам и также содержат верхнюю и нижнюю боковые частоты wo+W и wo-W. Различие заключается только в смене знака амплитуды нижней боковой частоты на минус, т.е. в дополнительном фазовом сдвиге нижней боковой частоты на 1800 относительно верхней боковой частоты. Соответственно, гармонические АМ сигналы могут быть трансформированы в ЧМ сигналы изменением на 180о начальной фазы одной из боковых полос. Заметим также, что при малых значениях индекса b основная мощность сигнала приходится на несущую частоту.

Рис. 15.2.2. Амплитуды гармоник сигналов с угловой модуляцией.

Математическая модель однотональных ЧМ и ФМ сигналов с любым значением индекса модуляции b в общем случае получается разложением функции (15.2.4) в следующий ряд:

u(t)=Um Jk(m) cos[(wo+kW)t],

где Jk(m) – функция Бесселя k-го индекса от аргумента m=b. Из этого уравнения следует, что спектр сигнала содержит бесконечное число составляющих - нижних и верхних боковых колебаний, с частотами wo±kW, которые соответствуют гармоникам частоты модуляции, и с амплитудами, пропорциональными значениям Jk(m). Амплитуды пяти первых гармоник и несущей частоты при Um=1 в зависимости от индекса модуляции приведены на рис. 15.2.2.

При малой величине индекса b значимые амплитудные значения имеют только первые гармоники. С ростом величины b количество значимых боковых составляющих увеличивается, а энергия сигнала перераспределяется на боковые составляющие. Функции Бесселя имеют колебательный характер, поэтому спектр при удалении от несущей частоты ωо спадает немонотонно. На рис. 15.2.2 можно также видеть, что при определенных значениях индекса модуляции (2.405, 5.52, 8.654 и т.д.) несущая частота wo в спектре сигнала полностью отсутствует. Форма физических амплитудный спектров модулированных сигналов относительно несущей частоты при разных индексах модуляции приведена на рис. 15.2.3.

Рис. 15.2.3. Модули спектров ЧМ сигнала при разных индексах модуляции.

(несущая частота 2500 Гц, гармоника модуляции 25 Гц, шкала частот в Гц относительно несущей)

С ростом индекса модуляции полоса частот, занимаемая сигналом, расширяется. Практическая ширина спектра сигнала с угловой модуляцией определяется по формуле:

Ппракт = 2(b+1)W, (15.2.8)

т.е. спектральными составляющими с номерами k>(b+1) пренебрегают. Формирование реальных сигналов, как правило, выполняется при b>>1, при этом эффективная ширина спектра равна удвоенной девиации частоты:

Ппракт» 2bW = 2wd. (15.2.9)

Отсюда следует, что по сравнению с АМ – сигналами, полоса частот которых равна 2W, для передачи сигналов с угловой модуляцией требуется полоса частот, в b раз большая. С другой стороны, именно широкополосность ЧМ и ФМ сигналов обеспечивает их большую помехоустойчивость по сравнению с АМ сигналами.

Для функций Бесселя имеет также место: J-k(m) = (-1)kJk(m). Это означает, что начальные фазы боковых колебаний с частотами wo+kW и wo-kW совпадают при четных k, и отличаются на 180о при нечетных k.

Сигналы с многотональной угловой модуляцией отличаются еще большей сложностью спектрального состава. В их спектре присутствуют не только боковые частоты с гармониками частот модулирующего сигнала, но и боковые комбинационные частоты типа wo±W1±W2±...Wi, со всеми возможными комбинациями частот модулирующего сигнала Wi. При непрерывном спектре модулирующего сигнала спектры ЧМ и ФМ сигналов также становятся непрерывными.

Демодуляция УМ – сигналов много сложнее демодуляции сигналов АМ.

При демодуляции зарегистрированных и записанных в ЗУ цифровых сигналов обычно используется метод формирования комплексного аналитического сигнала с помощью преобразования Гильберта:

ua(t) = u(t) + j uh(t),

где uh(t) – аналитически сопряженный сигнал или квадратурное дополнение сигнала u(t), которое вычисляется сверткой сигнала u(t) с оператором Гильберта (1/πt):

uh(t) = (1/π) u(t') dt'/(t-t').

Полная фаза колебаний представляет собой аргумент аналитического сигнала:

y(t) = arg(ua(t)).

Дальнейшие операции определяются видом угловой модуляции. При демодуляции ФМ сигналов из фазовой функции вычитается значение немодулированной несущей ωоt:

j(t) = y(t) - ωot.

При частотной модуляции фазовая функция дифференцируется с вычитанием из результата значения частоты ωо:

j(t) = dy(t)/dt - ωo.

В принципе, данный метод может применяться и в реальном масштабе времени, но с определенной степенью приближения, поскольку оператор Гильберта слабо затухает.

При демодуляции в реальном масштабе времени используется квадратурная обработка, при которой входной сигнал умножается на два опорных колебания со сдвигом фазы между колебаниями в 90о:

u1(t) = u(t) cos ωot = Um cos(ωot+j(t) cos ωot = ½ Um cos j(t) + ½ cos(2wot+j(t)),

u2(t) = u(t) sin ωot = Um cos(ωot+j(t) sin ωot = - ½ Um sin j(t) + ½ sin(2wot+j(t)).

Из этих двух сигналов фильтрами низких частот выделяются низкочастотные колебания, и формируется аналитический сигнал:

ua(t) = ½ Um cos j(t) - ½j Um sin j(t).

Аргумент этого аналитического сигнала, как и в первом случае, представляет полную фазу колебаний, обработка которой выполняется аналогично.

Квадратурная модуляция позволяет модулировать несущую частоту одновременно двумя сигналами путем модуляции амплитуды несущей одним сигналом, и фазы несущей другим сигналом. Уравнение результирующих колебаний амплитудно-фазовой модуляции:

s(t) = u(t) cos(ωot+j(t)).

Сигнал s(t) обычно формируют в несколько другой последовательности, с учетом последующей демодуляции. Раскроем косинус суммы и представим сигнал в виде суммы двух АМ-колебаний.

s(t) = u(t) cos ωot·cos j(t) – u(t) sin ωot·sin j(t).

При a(t) = u(t) cos j(t) и b(t) = -u(t) sin j(t), сигналы a(t) и b(t) могут быть использованы в качестве модулирующих сигналов несущих колебаний cos ωot и sin ωot, сдвинутых по фазе на 90о относительно друг друга:

s(t) = a(t) cos ωot + b(t) sin ωot.

Полученный сигнал называют квадратурным (quadrature), а способ модуляции - квадратурной модуляцией (КАМ).

Спектр квадратурного сигнала может быть получен непосредственно по уравнению балансной модуляции (15.1.17) для суммы двух сигналов:

S(ω) = ½ A(ω+ωo) + ½ A(ω-ωo) – ½j B(ω+ωo) + ½j B(ω-ωo).

Демодуляция квадратурного сигнала соответственно выполняется умножением на два опорных колебания, сдвинутых относительно друг друга на 90о:

s1(t) = s(t) cos ωot = ½ a(t) + ½ a(t) cos 2ωot + ½ b(t) sin 2ωot,

s2(t) = s(t) sin ωot = ½ b(t) + ½ a(t) sin 2ωot - ½ b(t) cos 2ωot.

Низкочастотные составляющие a(t) и b(t) выделяются фильтром низких частот. Как и при балансной амплитудной модуляции, для точной демодуляции сигналов требуется точное соблюдение частоты и начальной фазы опорного колебания.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: