Физические основы механики

1.1. Основные понятия, определения и законы
классической кинематики

1. Механика – это раздел физики, в котором изучается:

а) механическое движение без причин, вызывающих это движение, и происходящие при этом взаимодействия между телами;

б) механическое движение, причины, вызывающие это движение, без происходящих при этом взаимодействий между телами;

в) механическое движение, причины, вызывающие это движение, и происходящие при этом взаимодействия между телами.

2. Механическое движение – это:

а) изменение с течением времени механических свойств тел или их частей (частиц) в пространстве;

б) процесс изменения положения физических тел или их частей по отношению к другим телам или частям одного и того же тела в пространстве и во времени;

в) изменение с течением времени положения данного тела или его частей относительно других тел (или их частей);

г)простейшая форма движения материи, которая состоит в перемещении тел или их частей друг относительно друга.

3. Кинематика – это раздел механики, в котором изучают:

а) геометрические свойства движения и взаимодействия тел в не связи с причинами их порождающими;

б) механические движения тел во времени и не рассматривают какие-либо воздействия на эти тела других тел или полей;

в) геометрические свойства движения и взаимодействия тел совместно с причинами их порождающими;

г) механические движения тел во времени и рассматривают какие-либо воздействия на эти тела других тел или полей.

4. Динамика изучает:

а) механические движения тел во времени и рассматривает какие-либо воздействия на эти тела других тел или полей;

б) механические движения тел во времени и рассматривает какие-либо воздействия на эти тела других тел или полей;

в) движение и взаимодействия тел совместно с причинами, обусловливающими тот или иной характер движения и взаимодействия;

г) геометрические свойства движения и взаимодействия тел в не связи с причинами их порождающими.

5. Статика изучает:

а) свойства материальных точек, тел, систем;

б) равновесие материальных точек, тел и систем;

в) материальные точки, тела и системы.

6. Материальная точка – это:

а) протяженное тело, размерами которого в условиях данной задачи можно пренебречь;

б) протяженное тело, обладающее массой;

в) протяженное тело, обладающее массой, размерами которого в условиях данной задачи можно пренебречь;

г) объект, размерами которого в условиях данной задачи можно пренебречь, обладающий массой.

7. Понятие «Материальная точка» применимо:

а) при поступательном движении;

б) при любом движении;

в) когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс;

г) когда в изучаемом движении нельзя пренебречь вращением тела вокруг его центра масс.

8. Абсолютно твердое тело – это:

а) тело, расстояние между двумя любыми точками которого в процессе движения изменяется;

б) тело, расстояние между двумя любыми точками которого в процессе движения остается неизменным;

в) тело, расстояние между двумя любыми точками которого остается неизменным.

9. Понятие «Абсолютно твердое тело» применимо:

а) к телам, деформация которых затруднена;

б) когда можно пренебречь деформацией тела в общем случае;

в) когда можно пренебречь деформацией тела в условиях данной задачи.

10. Понятие «Сплошная изменяемая среда» применимо при изучении движения:

а) деформируемого твердого тела;

б) жидкости и газа;

в) когда можно пренебречь молекулярной структурой среды.

11. При изучении сплошных сред вводят такие абстракции, которые отражают при данных условиях наиболее существенные свойства реальных тел. К понятию «Сплошная изменяемая среда» относят:

а) идеально упругое тело, пластичное тело;

б) идеальная жидкость, вязкая жидкость;

в) идеальный газ, реальный газ.

12. Пространство и время – категории, обозначающие основные формы существования и взаимодействия объектов. Пространство выражает порядок существования объектов. Время – порядок смены событий. К метрическим свойствам пространства и времени относят:

а) размерность;

б) протяженность и длительность;

в) непрерывность и связанность;

г) порядок и направление времени.

13. Пространство и время – категории, обозначающие основные формы существования и взаимодействия объектов. Пространство выражает порядок существования объектов. Время – порядок смены событий. К топологическим свойствам пространства и времени относят:

а) размерность;

б) протяженность и длительность;

в) непрерывность и связанность;

г) порядок и направление времени.

14. Система единиц измерения физических величин – это:

а) совокупность основных и производных;

б) совокупность основных и дополнительных эталонов;

в) совокупность основных, производных и дополнительных эталонов;

г) совокупность производных и дополнительных эталонов.

15. В системе СИ основными единицами измерения являются:

а) единица измерения силы тока (I) – 1 А (ампер); единица измерения силы света (I) – 1 св. (свеча);

б) единица измерения длины (L) – 1 м (метр); единица измерения массы (M) – 1 кг (килограмм);

в) единица измерения времени (T) – 1 с (секунда); единица измерения температуры (Т) – 1 К (градус по шкале Кельвина);

г) единица измерения плоского угла – 1 рад (радиан); единица измерения телесного угла – 1 стерад (стерадиан).

16. В системе СИ дополнительными единицами измерения являются:

а) единица измерения силы тока (I) – 1 А (ампер); единица измерения силы света (I) – 1 св. (свеча);

б) единица измерения длины (L) – 1 м (метр); единица измерения массы (M) – 1 кг (килограмм);

в) единица измерения времени (T) – 1 с (секунда); единица измерения температуры (Т) – 1 К (градус по шкале Кельвина);

г) единица измерения плоского угла – 1 рад (радиан); единица измерения телесного угла – 1 стерад (стерадиан).

17. Телом отсчета называют:

а) произвольно выбранное, условно неподвижное тело, по отношению к которому рассматривается движение данного тела;

б) произвольно выбранное тело, по отношению к которому рассматривается движение данного тела;

в) любое, условно неподвижное тело, по отношению к которому рассматривается движение других тел.

18. Система отсчета:

а) фиксированная, условно неподвижная, прямоугольная, трехмерная система координат, связанная с телом отсчёта;

б) произвольно выбранная, условно неподвижная, прямоугольная, трехмерная система координат, связанная с телом отсчёта;

в) любая, произвольная, условно неподвижная, прямоугольная, трехмерная система координат, не связанная с телом отсчёта.

19. Части движущегося автомобиля, которые находятся в покое относительно дороги:

а) все точки колёс;

б) все точки осей колёс;

в) точки колёс, соприкасающиеся в данное мгновение с дорогой;

г) точки колёс, соприкасающиеся в данное мгновение с осями колёс.

20. Части движущегося автомобиля, которые движутся относительно кузова автомобиля:

а) все точки колёс;

б) все точки осей колёс;

в) точки колёс, соприкасающиеся в данное мгновение с дорогой;

г) точки колёс, соприкасающиеся в данное мгновение с осями колёс.

21. Полярная система отсчета – это:

а) любая, произвольно выбранная, условно неподвижная система координат, положение материальной точки (тела) в которой задается радиус-вектором и углами j и q, не связанная с телом отсчёта;

б) фиксированная, условно неподвижная система координат, положение материальной точки (тела) в которой задается радиус-вектором и углами j и q, связанная с телом отсчёта;

в) произвольно выбранная, условно неподвижная, система координат, положение материальной точки (тела) в которой задается радиус-вектором и углами j и q, связанная с телом отсчёта.

22. Траектория движения – это:

а) линия, которую описывает конец радиус-вектора в пространстве;

б) совокупность последовательных положений материальной точки (тела) в процессе ее движения;

в) линии, которые описывают различные точки тела конечных размеров при его движении;

д) среди приведённых ответов правильного ответа нет.

23. Траектория движения точек винта самолёта по отношению к лётчику – это:

а) прямая линия;

б) эллипс;

в) окружность;

г) винтовая линия.

24. Траектория движения точек винта самолёта по отношению к Земле – это:

а) прямая линия;

б) эллипс;

в) окружноть;

г) винтовая линия.

25. Траектория движения шарика, пущенного из центра горизонтально расположенного вращающегося диска по его поверхности, относительно Земли – это:

а) прямая линия;

б) эллипс;

в) окружноть;

г) спиральная линия.

26. Траектория движения шарика, пущенного из центра горизонтально расположенного вращающегося диска по его поверхности, относительно диска – это:

а) прямая линия;

б) эллипс;

в) окружноть;

г) спиральная линия.

27. Положение материальной точки (тела) в трехмерной, прямоугольной системе отсчета в данный момент времени может быть определено:

а) с помощью координат x, y, z – M(x,y,z);

б) с помощью радиус-вектора ;

в) естественным (траекторным) способом;

г) среди приведённых ответов правильного ответа нет.

28. Уравнения движения материальной точки (тела) в кинематике имеют следующий вид:

а) rx = x, ry = y, rz = z;

б) x = f1(t); y = f2(t); z = f3(t);

в) rx = f1(t); ry = f2 (t); rz = f3(t);

г) , где x, y, z – координаты; rx, ry, rz – проекции радиуса вектора на соответствующие оси координат.

29. Уравнение движения материальной точки имеет вид . По какой траектории движется данная материальная точка?

а) по эллипсу;

б) по окружности;

в) по прямой;

г) по параболе;

д) по гиберболе.

30. Уравнение движения материальной точки имеет вид x2 + y2 = a2. По какой траектории движется данная материальная точка?

а) по эллипсу;

б) по окружности;

в) по прямой;

г) по параболе.

д) по гиберболе.

31. Уравнение движения материальной точки имеет вид . По какой траектории движется данная материальная точка?

а) по эллипсу;

б) по окружности;

в) по прямой;

г) по параболе;

д) по гиберболе.

32. Уравнение движения материальной точки имеет вид . По какой траектории движется данная материальная точка?

а) по эллипсу;

б) по окружности;

в) по прямой;

г) по параболе.

д) по гиберболе.

33. Уравнение движения материальной точки имеет вид y = = kx – bx2. По какой траектории движется данная материальная точка?

а) по эллипсу;

б) по окружности;

в) по прямой;

г) по параболе.

д) по гиберболе.

34. Поступательное движение – это движение, при котором:

а) любая прямая, соединяющая две произвольные точки тела, перемещается, оставаясь параллельной самой себе;

б) тело перемещается параллельно самому себе;

в) все точки тела описывают одинаковые траектории, смещенные относительно друг друга;

г) среди приведённых ответов правильного ответа нет.

35. Перемещение – это:

а) приращение радиус-вектора за рассматриваемый промежуток времени ;

б) вектор , проведенный из начального положения материальной точки (тела) в положение этой точки в данный момент времени;

в) вектор , проведенный из начала отсчёта в положение материальной точки (тела) в данный момент времени;

г) среди приведённых ответов правильного ответа нет.

36. Элементарное перемещение – это:

а) бесконечно малое перемещение;

б) бесконечно малое перемещение, которое с достаточной степенью точности совпадает с соответствующим участком траектории движения;

в) бесконечно малое перемещение, которое не совпадает с соответствующим участком траектории движения;

г) среди приведённых ответов правильного ответа нет.

37. Путь – это:

а) расстояние между начальным и конечным положениями материальой точки (тела);

б) расстояние, пройденное материальной точкой (телом) при движении по траектории;

в) модуль перемещения;

г) среди приведённых ответов правильного ответа нет.

38. Расстояние – это:

а) расстояние между начальным и конечным положениями материальой точки (тела);

б) расстояние, пройденное материальной точкой (телом) при движении по траектории;

в) модуль перемещения;

г) среди приведённых ответов правильного ответа нет.

39. Перемещение какой-либо точки, находящейся на краю диска радиусом R, в системе отсчёта, связанной с подставкой, на которой расположен диск, при его повороте на угол φ = 60º, равно:

а) 0;

б) R;

в) 2R;

г) 3R.

40. Перемещение какой-либо точки, находящейся на краю диска радиусом R, в системе отсчёта, связанной с подставкой, на которой расположен диск, при его повороте на угол φ = 180º, равно:

а) 0;

б) R;

в) 2R;

г) 3R.

41. Перемещение какой-либо точки, находящейся на краю диска радиусом R, в системе отсчёта, связанной с диском, при его повороте на угол φ = 60º, равно:

а) 0;

б) R;

в) 2R;

г) 3R.

42. Перемещение какой-либо точки, находящейся на краю диска радиусом R, в системе отсчёта, связанной с диском, при его повороте на угол φ = 180º, равно:

а) 0;

б) R;

в) 2R;

г) 3R.

43. Мгновенная линейная скорость – это:

а) векторная физическая величина, характеризующая состояние движения;

б) векторная физическая величина, показывающая, как изменяется перемещение в единицу времени;

в) векторная физическая величина, равная первой производной от перемещения по времени;

г) векторная физическая величина, численно равная отношению всего пути, пройденного телом (материальной точкой), к тому промежутку времени, в течение которого совершалось движение.

44. Средняя скорость неравномерного движения – это:

а) векторная физическая величина, численно равная отношению всего пути, пройденного телом (материальной точкой), к тому промежутку времени, в течение которого совершалось движение;

б) скалярная физическая величина, численно равная отношению всего пути, пройденного телом (материальной точкой), к тому промежутку времени, в течение которого совершалось движение;

в) векторная физическая величина, характеризующая состояние движения;

г) векторная физическая величина, показывающая, как изменяется перемещение в единицу времени.

45. Равномерному движению соответствует соотношение:

а) s = 2t + 3;

б) s = 5t2;

в) s = 3t;

г) v = 4 – t;

д) v = 7.

46. Линейное ускорение – это:

а) векторная физическая величина, равная первой производной от скорости по времени;

б) скалярная физическая величина, характеризующая изменение скорости в единицу времени;

в) векторная физическая величина, характеризующая изменение скорости в единицу времени;

г) векторная физическая величина, равная второй производной от перемещения по времени.

47. Тангенциальное ускорение:

а) изменяет линейную скорость только по величине;

б) это составляющая ускорения, направленная по касательной к траектории движения;

в) изменяет линейную скорость по величине и направлению;

г) изменяет линейную скорость только по направлению.

48. Нормальное ускорение – это:

а) составляющая линейного ускорения, направленная по нормали к вектору линейной скорости;

б) составляющая линейного ускорения, изменяющая линейную скорость по величине и направлению;

в) составляющая линейного ускорения, изменяющая линейную скорость только по направлению;

г) составляющая линейного ускорения, изменяющая линейную скорость только по величине.

49. Связь между тангенциальным, нормальным и полным ускорениями отображает формула:

а) ;

б) ;

в) .

50. Если при движении материальной точки (тела) тангенциальное и нормальное ускорения равны нулю, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное прямолинейное;

в) прямолинейное неравномерное;

г) криволинейное с постоянной скоростью.

51. Если при движении материальной точки (тела) тангенциальное ускорение не равно нулю, а нормальное ускорение равно нулю, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное прямолинейное;

в) прямолинейное неравномерное;

г) криволинейное с постоянной скоростью.

52. Если при движении материальной точки (тела) тангенциальное ускорение не равно нулю, а нормальное ускорение равно нулю, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное прямолинейное;

в) прямолинейное неравномерное;

г) криволинейное с постоянной скоростью.

53. Если при движении материальной точки (тела) тангенциальное ускорение равно нулю, а нормальное ускорение не равно нулю, материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное прямолинейное;

в) прямолинейное неравномерное;

г) криволинейное с постоянной скоростью.

54. Если при движении материальной точки (тела) тангенциальное ускорение равно нулю, нормальное ускорение является величиной постоянной, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное, по окружности;

в) прямолинейное неравномерное;

г) криволинейное с постоянной скоростью.

55. Если при движении материальной точки (тела) тангенциальное и нормальное ускорения являются постоянными величинами, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное, по окружности;

в) равнопеременное, по окружности;

г) криволинейное с постоянной скоростью.

56. Если при движении материальной точки (тела) тангенциальное и нормальное ускорения зависят от времени, то материальная точка (тело) совершает движение:

а) равнопеременное прямолинейное;

б) равномерное, по окружности;

в) равнопеременное, по окружности;

г) неравномерное криволинейное.

57. В общем случае путь, пройденный материальной точкой (телом) при неравномерном движении за промежуток времени от t1 до t2, можно определить по формуле:

а) dS = v · dt;

б) ;

в) .

58. Три тела движутся равномерно и прямолинейно. На рисунке 1 представлены графики зависимости их координат от времени. Какая из прямых графика завиcимости пути от времени, представленного на рисунке 2, соответствует телу I?

а) 1; б) 2; в) 3.

59. Три тела движутся равномерно и прямолинейно. На рисунке 1 представлены графики зависимости их координат от времени. Какая из прямых графика завиcимости пути от времени, представленного на рисунке 2, соответствует телу II?

а) 1; б) 2; в) 3.

60. Три тела движутся равномерно и прямолинейно. На рисунке 1 представлены графики зависимости их координат от времени. Какая из прямых графика зависимости пути от времени, представленного на рисунке 2, соответствует телу III?

а) 1; б) 2; в) 3.

61. На рисунке 1 представлены графики пути трёх тел. Как движется первое тело?

а) равномерно; б) равноускоренно; в) равнозамедленно.

62. На рисунке 1 представлены графики пути трёх тел. Как движется второе тело?

а) равномерно; б) равноускоренно; в) равнозамедленно.

63. На рисунке 1 представлены графики пути трёх тел. Как движется третье тело?

а) равномерно; б) равноускоренно; в) равнозамедленно.

64. На рисунке 1 представлены графики пути трёх тел. Скорость какого тела, из этих трёх тел, наибольшая?

а) 1; б) 2; в) 3.

65. На рисунке 1 представлен график пути автомобиля. На каком из участков автомобиль находился в движении?

а) 1; б) 2; в) 3.

66. На рисунке 1 представлен график пути автомобиля. На каком из участков автомобиль находился в покое?

а) 1; б) 2; в) 3.

67. На рисунке 1 представлен график пути автомобиля. На каком из участков скорость автомобиля была наибольшей?

а) 1; б) 2; в) 3. г) среди приведенных ответов правильного нет.

68. На рисунке 1 представлен график пути автомобиля. На каком из участков скорость автомобиля была наибольшей?

а) 1; б) 2; в) 3.

69. На улицах городов и на автотрассах вывешивают знаки, запрещающие движение со скоростью, превышающей величину скорости, указанную на знаке. Какая скорость имеется в виду?

а) мгновенная и средняя;

б) средняя;

в) мгновенная.

70. На улицах городов и на автотрассах вывешивают знаки, запрещающие движение со скоростью, превышающей величину скорости, указанную на знаке. Правильно ли в этом случае указана размерность скорости?

а) да;

б) нет;

в) среди приведенных ответов правильного нет.

71. Токарь обрабатывает деталь со скоростью 2500 м/мин. О какой скорости идет речь в этом случае?

а) о мгновенной;

б) о средней;

в) о мгновенной и средней;

г) среди приведенных ответов правильного нет.

72. Автомобиль прошёл расстояние от одного города до другого города со скоростью 60 км/ч. О какой скорости идет речь в этом случае?

а) о мгновенной;

б) о средней;

в) о мгновенной и средней;

г) среди приведенных ответов правильного нет.

73. Скорость шарика в момент удара о преграду равна 20 м/с. О какой скорости идет речь в этом случае?

а) о мгновенной;

б) о средней;

в) о мгновенной и средней;

г) среди приведенных ответов правильного нет.

74. Скорость удара молотка по гвоздю равна 5 м/с. О какой скорости идет речь в этом случае?

а) о мгновенной;

б) о средней;

в) о мгновенной и средней;

г) среди приведенных ответов правильного нет.

75. На рисунке 1 представлен график зависимости ускорения автомобиля от времени. Как движется автомобиль в этом случае?

а) с постоянной скоростью; б) равноускоренно; в) равнозамедленно; г) ускоренно с равномерно возрастающим ускорением.

76. На рисунке 1 представлен график зависимости ускорения автомобиля от времени. Как движется автомобиль в этом случае?

а) с постоянной скоростью; б) равноускоренно; в) равнозамедленно; г) ускоренно с равномерно возрастающим ускорением.

77. На рисунке 1 представлен график зависимости ускорения автомобиля от времени. Как движется автомобиль в этом случае?

а) с постоянной скоростью; б) равноускоренно; в) равнозамедленно; г) ускоренно с равномерно возрастающим ускорением.

78. На рисунке 1 представлен график зависимости ускорения автомобиля от времени. Как движется автомобиль в этом случае?

а) с постоянной скоростью; б) равноускоренно; в) равнозамедленно; г) ускоренно с равномерно убывающим ускорением.

79. Зависимости пути и скорости движения автомобиля могут быть представлены в виде некоторых функций времени. Какие из приведенных зависимостей описывают равнопеременное движение?

а) v = 3 + 2t;

б) s = 3 + 2t;

в) s = 3t2;

г) s = 2t – t2;

д) s = 2 – 3t + 5t2.

80. Скорость автомобиля изменяется согласно уравнению v = 5 + 4t. Уравнение зависмости пути от времени в этом случае будет иметь вид:

а) s = 5t + 2t2;

б) s = s0 + 2t2;

в) s = 2t2;

г) s = s0 + 5t + 2t2.

81. Известно, что в некоторых случаях зависимость пути, пройденного автомобилем при равноускоренном и прямолинейном движении за некоторый промежуток времени, можно определить по формуле . При какой скорости или при каком ускорении путь, пройденный автомобилем за первую секунду своего движения, не будет равен половине его ускорения?

а) a ≠ const;

б) a = const;

в) v0 ≠ const;

г) v0 = 0;

д) v0 ≠ 0.

82. Известно, что в некоторых случаях зависимость пути, пройденного автомобилем при равноускоренном и прямолинейном движении за некоторый промежуток времени, можно определить по формуле . В каком случае путь, пройденный автомобилем за первую секунду своего движении, будет равен половине его ускорения?

а) a ≠ const;

б) a = const;

в) v0 ≠ const;

г) v0 = 0;

д) v0 ≠ 0.

83. Вращательное движение твердого тела вокруг неподвижной оси вращения – это движение, при котором:

а) все точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси;

б) какие-либо две его точки остаются неподвижными в процессе движения, все остальные точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси;

в) какие-либо две его точки остаются неподвижными в процессе движения;

г) все точки твердого тела описывают окружности в произвольных плоскостях.

84. Угол поворота – это:

а) угол, отсчитанный между двумя последовательными положениями радиуса R;

б) угол между проведенными через ось вращения неподвижной полуплоскостью (плоскостью отсчета) и полуплоскостью, жестко связанной с телом и вращающейся вместе с ним;

в) псевдовектор – вектор, численно равный углу между двумя положениями радиуса R, направленный вдоль оси вращения и связанный с направлением вращения правилом векторного произведения;

г) псевдовектор, численно равный углу, отсчитанному между двумя последовательными положениями радиус-вектора , и связанный с направлением вращения правилом правого винта.

85. Угловая скорость () – это:

а) векторная физическая величина, показывающая, как изменяется угол поворота в единицу времени;

б) векторная физическая величина, численно равная первой производной от угла поворота по времени;

в) скалярная физическая величина, численно равная первой производной от угла поворота по времени;

г) векторная физическая величина, направленная вдоль оси вращения в сторону, определяемую правилом левого винта (правилом векторного умножения).

86. Угловое ускорение () – это:

а) скалярная физическая величина, характеризующая изменение угловой скорости в единицу времени;

б) векторная физическая величина, характеризующая изменение угловой скорости в единицу времени;

в) скалярная физическая величина, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени;

г) векторная физическая величина, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени.

87. Направление вектора углового ускорения:

а) всегда совпадает с направлением вектора угловой скорости;

б) совпадает с направлением вектора угловой скорости в случае ускоренного вращения;

в) противоположно – в случае замедленного вращения.

88. Период вращения (T) – это:

а) время, в течение которого тело совершает один полный оборот;

б) время, в течение которого тело совершает несколько полных оборотов;

в) время, в течение которого тело совершает 2π полных оборотов.

89. Частота вращения (ν) – это:

а) число оборотов, совершаемых за 1 с;

б) число оборотов, совершаемых за время равное 2π;

в) число оборотов, совершаемых в единицу времени.

90. Круговая (циклическая) частота (ω) – это:

а) число оборотов, совершаемых за 1 с;

б) число оборотов, совершаемых за время равное 2π;

в) число оборотов, совершаемых в единицу времени.

91. Между периодом, частотой и круговой частотой существует связь. Какая из приведенных формул отображает связь между периодом и частотой вращения?

а) ;

б) ;

в) .

92. Между периодом, частотой и круговой частотой существует связь. Какая из приведенных формул отображает связь между периодом и круговой частотой вращения?

а) ;

б) ;

в) .

93. Между периодом, частотой и круговой частотой существует связь. Какая из приведенных формул отображает связь между частотой и круговой частотой вращения?

а) ;

б) ;

в) .

94. Между линейными и угловыми скоростями и ускорениями существует связь. Какая из приведенных формул отображает связь между линейной скоростью и угловой скоростью?

а) ;

б) ;

в) ;

г) ;

д) .

95. Между линейными и угловыми скоростями и ускорениями существует связь. Какая из приведенных формул отображает связь между нормальным ускорением и угловым ускорением?

а) ;

б) ;

в) ;

г) ;

д) .

96. Между линейными и угловыми скоростями и ускорениями существует связь. Какая из приведенных формул отображает связь между тангенциальным ускорением и угловым ускорением?

а) ;

б) ;

в) ;

г) ;

д) .

97. Между линейными и угловыми скоростями и ускорениями существует связь. Какая из приведенных формул отображает связь между полным линейным ускорением и угловой скоростью и угловым ускорением?

а) ;

б) ;

в) ;

г) ;

д) .

98. Точка М движется по спирали с постоянной по величине линейной скоростью в направлении, указанном стрелкой (рис. 1). При этом величина нормального ускорения:

а) уменьшается; б) увеличивается; в) не изменяется.

99. Диск радиуса R вращается вокруг вертикальной оси равноускоренно по часовой стрелке (рис. 1). Направление вектора углового ускорения – это:

а) 1; б) 4; в) 3; г) 2.

100. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). С какой линейной скоростью движется нижняя точка колеса, соприкасающаяся с поверхностью дороги, если она не проскальзывает, относительно Земли?

а) 60 км/ч; б) 120 км/ч; в) 0.

101. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). С какой линейной скоростью движется верхняя точка колеса относительно Земли?

а) 60 км/ч; б) 120 км/ч; в) 0.

102. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). С какой линейной скоростью движется любая точка колеса относительно оси?

а) 60 км/ч; б) 120 км/ч; в) 0.

103. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). С какой линейной скоростью движется точка N колеса относительно Земли?

а)» 60 км/ч; б)» 85 км/ч; в)» 120 км/ч; г) 0.

104. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). С какой линейной скоростью движется точка N колеса относительно Земли?

а)» 60 км/ч; б)» 85 км/ч; в)» 120 км/ч; г) 0.

105. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). Направление вращения одного из колес указано стрелкой. Укажите направление линейной скорости движения точки N колеса относительно Земли:

а) 1; б) 2; в) 3; г) 4.

106. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). Направление вращения одного из колес указано стрелкой. Укажите направление линейной скорости движения точки N колеса относительно Земли:

а) 1; б) 2; в) 3; г) 4.

107. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч (рис. 1). Направление вращения одного из колес указано стрелкой. Укажите направление линейной скорости движения точки N колеса относительно Земли:

а) 1; б) 2; в) 3; г) 4.

108. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Вектор линейной скорости некоторой точки М колеса направлен так, как показано на рисунке 1. Как направлен вектор угловой скорости этой точки?

а) влево; б) вправо; в) к нам; г) от нас.

109. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Вектор линейной скорости некоторой точки М колеса направлен так, как показано на рисунке 1. Как направлен вектор угловой скорости этой точки?

а) влево; б) вправо; в) к нам; г) от нас.

110. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Вектор линейной скорости некоторой точки М колеса направлен так, как показано на рисунке 1. Как направлен вектор угловой скорости этой точки?

а) влево; б) вправо; в) к нам; г) от нас.

111. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Вектор линейной скорости некоторой точки М колеса направлен так, как показано на рисунке 1. Как направлен вектор угловой скорости этой точки?

а) влево; б) вправо; в) к нам; г) от нас.

112. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор угловой скорости точки М?

а) влево; б) вправо; в) к нам; г) от нас.

113. Автомобиль движется равномерно и прямолинейно с линейной скоростью 60 км/ч. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор угловой скорости точки М?

а) влево; б) вправо; в) к нам; г) от нас.

114. Автомобиль движется равноускоренно и прямолинейно. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор угловой скорости точки М?

а) влево; б) вправо; в) к нам; г) от нас.

115. Автомобиль движется равноускоренно и прямолинейно. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор углового ускорения точки М?

а) влево; б) вправо; в) к нам; г) от нас.

116. Автомобиль движется равнозамедленно и прямолинейно. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор углового ускорения точки М?

а) влево; б) вправо; в) к нам; г) от нас.

117. Автомобиль движется равноускоренно и прямолинейно. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор углового ускорения точки М?

а) влево; б) вправо; в) к нам; г) от нас.

118. Автомобиль движется равнозамедленно и прямолинейно. Направление вращения одного из колёс автомобиля указано стрелкой (рис. 1). Как направлен вектор углового ускорения точки М?

а) влево; б) вправо; в) к нам; г) от нас.

119. На рисунке 1 представлено движущееся в плоскости тело, у которого точки А и В имеют неодинаковые линейные скорости (v1 > v2). Как движется тело?

а) равномерно; б) ускоренно; в) поступательно; г) совершает вращательное движение относительно точки N.

120. На рисунке 1 представлено движущееся в плоскости тело, у которого точки А и В имеют неодинаковые линейные скорости (v1 < v2). Как движется тело?

а) равномерно; б) ускоренно; в) поступательно; г) совершает вращательное движение относительно точки N.

121. На рисунке 1 представлено движущееся в плоскости тело, у которого точки А и В имеют неодинаковые линейные скорости (v1 > v2). Как направлен вектор угловой скорости?

а) влево; б) вправо; в) от нас; г) к нам.

122. На рисунке 1 представлено движущееся в плоскости тело, у которого точки А и В имеют неодинаковые линейные скорости (v1 > v2). Как направлен вектор угловой скорости?

а) влево; б) вправо; в) от нас; г) к нам.

123. Частица движется вдоль окружности радиусом 1 м в соответствии с уравнением . Частица остановится через:

а) 4 с;

б) 3 с;

в) 2 с;

г) 1 с.

124. Колебательные движения (колебания) – это:

а) движения, не изменяющиеся с течением времени;

б) движения, обладающие повторяемостью во времени;

в) процессы, не изменяющиеся с течением времени;

г) процессы, обладающие повторяемостью во времени.

125. Гармоническими колебаниями называют:

а) такие колебания, при которых физическая или любая другая величина изменяется с течением времени по закону синуса или косинуса. Например, смещение материальной точки (тела) от положения равновесия изменяется с течением времени по закону ;

б) такие колебания, при которых физическая или любая другая величина изменяется с течением времени по закону синуса. Например, смещение материальной точки (тела) от положения равновесия изменяется с течением времени по закону ;

в) такие колебания, при которых физическая или любая другая величина изменяется с течением времени по закону косинуса. Например, смещение материальной точки от положения равновесия изменяется с течением времени по закону ;

г) такие колебания, при которых физическая или любая другая величина изменяется с течением времени по закону синуса или косинуса. Например, смещение материальной точки (тела) от положения равновесия изменяется с течением времени по закону .

126. Гармонические колебания материальной точки (тела) совершаются по закону , где x – это:

а) смещение – удаление материальной точки от положения равновесия в данный момент времени t;

б) смещение – удаление материальной точки от положения равновесия в произвольный момент времени t;

в) наибольшее (максимальное) удаление материальной точки от положения равновесия;

г) среди приведенных ответов правильного нет.

127. Гармонические колебания материальной точки (тела) совершаются по закону , где x0 – это:

а) смещение – удаление материальной точки от положения равновесия в данный момент времени t;

б) смещение – удаление материальной точки от положения равновесия в произвольный момент времени t;

в) амплитуда колебаний – наибольшее (максимальное) смещение (удаление) материальной точки от положения равновесия.

128. Гармонические колебания материальной точки (тела) совершаются по закону , где – это:

а) фаза колебаний – периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в любой момент времени t;

б) фаза колебаний – периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в данный момент времени t;

в) фаза колебаний – определяет положение материальной точки в данный момент времени t.

129. Гармонические колебания материальной точки (тела) совершаются по закону , где – это:

а) начальная фаза колебаний – периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в любой момент времени t;

б) начальная фаза колебаний – периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в момент времени t = 0;

в) фаза колебаний – определяет положение материальной точки в момент времени t = 0.

130. Гармонические колебания материальной точки (тела) совершаются по закону , где – это:

а) круговая (циклическая) частота колебаний. Определяет число колебаний, совершаемых за любой промежуток времени t;

б) круговая (циклическая) частота колебаний. Определяет число колебаний, совершаемых за промежуток времени t = 2p;

в) круговая (циклическая) частота колебаний. Определяет число колебаний, совершаемых за промежуток времени t = 1 с.

131. Гармонические колебания материальной точки (тела) совершаются по закону , где – это:

а) период колебаний; время, в течение которого совершается любое число колебаний;

б) период колебаний; время, в течение которого совершается любое n колебаний;

в) период колебаний; время, в течение которого совершается одно полное колебание.

132. Гармонические колебания материальной точки (тела) совершаются по закону , где – это:

а) частота колебаний; число колебаний, совершаемых в единицу времени;

б) частота колебаний; число колебаний, совершаемых за любой промежуток времени;

в) частота колебаний; число колебаний, совершаемых за время t = 2p.

133. Скорость материальной точки (тела), совершающей гармоническое колебательное движение, – это:

а) физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени: ;

б) физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени: ;

в) физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени: ;

г) физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени: .

134. Ускорение материальной точки, совершающей гармоническое колебание – это:

а) физическая величина, которая показывает, как изменяется скорость материальной точки в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени: ;

б) физическая величина, которая показывает, как изменяется скорость материальной точки в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени: ;

в) физическая величина, которая показывает, как изменяется скорость материальной точки в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени: ;

г) физическая величина, которая показывает, как изменяется скорость материальной точки в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени: .

135. При гармонических колебаниях:

а) скорость имеет максимальное значение, когда точка проходит положение равновесия, а ускорение – в крайних положениях;

б) скорость имеет максимальное значение, когда точка находится в крайних положениях, а ускорение – в положении равновесия;

в) скорость и ускорение имеют максимальные значения, когда точка проходит положение равновесия;

г) скорость и ускорение имеют максимальные значения, когда точка находится в крайних положениях.

136. Результат сложения гармонических колебаний можно оценить аналитеским методом и методом векторных диаграмм. Метод векторных диаграмм при сложении гармонических колебаний одного направления заключается в том, что:

а) гармонические колебания изображаются графически в виде синусоид на плоскости, амплитуды которых равны амплитудам складываемых колебаний в данный момент времени t;

б) гармонические колебания изображаются графически в виде векторов на плоскости, проведенных из начала координат, модули которых равны амплитудам, а углы наклона к оси координат – начальным фазам складываемых колебаний;

в) гармонические колебания изображаются графически в виде векторов на плоскости, проведенных из начала координат, модули которых равны амплитудам, а углы наклона к оси координат – фазам складываемых колебаний в данный момент времени t;

г) гармонические колебания изображаются графически в виде векторов на плоскости, проведенных из начала координат, модули которых равны смещениям, а углы наклона к оси координат – фазам складываемых колебаний в данный момент времени t.

137. Анализ результата сложения гармонических колебаний одного направления приводит к следующему выводу:

а) если разность начальных фаз складываемых колебаний равна четному числу p, то при k = 0 колебания синфазные, усиливают друг друга;

б) если разность начальных фаз складываемых колебаний равна четному числу p, то при k = 0 колебания синфазные, ослабляют друг друга;

в) если разность начальных фаз складываемых колебаний равна нечетному числу p, то при k = 0 колебания противофазные, ослабляют друг друга;

г) если разность начальных фаз складываемых колебаний равна нечетному числу p, то при k = 0 колебания противофазные, усиливают друг друга.

138. Аналитический метод сложения гармонических колебаний заключается в том, что результирующее колебание двух гармонических колебаний одного направления получается согласно следующему закону:

а) ;

б) ;

в) ;

г) .

139. Биения – это:

а) колебание, полученное в результате сложения гармонических колебаний одного направления;

б) колебание, представляющее собой один из вариантов амплитудно-модулированных колебаний;

в) периодические изменения амплитуды результирующего колебания, возникающие при сложении двух гармонических колебаний с любыми амплитудами и близкими частотами;

г) периодические изменения амплитуды результирующего колебания, возникающие при сложении двух гармонических колебаний с одинаковыми амплитудами и близкими частотами.

140. Для нахождения траектории движения материальной точки (тела) при сложении взаимно перпендикулярных колебаний необходимо:

а) из уравнений движения исключить фазу колебаний;

б) из уравнений движения исключить начальную фазу колебаний;

в) из уравнений движения исключить амплитуду колебаний;

г) из уравнений движения исключить время.

141. При сложении взаимно перпендикулярных колебаний с одинаковыми частотами, различными амплитудами и фазами, отличающимися на 900, уравнение траектории имеет вид:

а) ;

б) ;

в) ;

г) .

142. Уравнение результирующего колебания имеет вид , где – это:

а) максимальное смещение результирующего колебания, которое зависит от разности частот складываемых колебаний;

б) смещение результирующего колебания, которое зависит от разности частот складываемых колебаний;

в) амплитуда результирующего колебания, которая зависит от разности частот складываемых колебаний;

143. Уравнение результирующего колебания имеет вид , где – это:

а) максимальное смещение результирующего колебания, которое зависит от частот складываемых колебаний;

б) смещение результирующего колебания в данный момент времени t, которое зависит от частот складываемых колебаний;

в) смещение результирующего колебания в данный момент времени t, изменяющееся по гармоническому закону.

144. В результате сложения гармонических колебаний с одинаковыми частотами, различными амплитудами с начальными фазами, равными нулю, возникает результирующее колебание, которое является:

а) ангармоническим;

б) гармоническим;

в) биением.

145. В результате сложения гармонических колебаний с одинаковыми частотами, различными амплитудами с начальными фазами возникает результирующее колебание, траектория движения которого – это:

а) окружность;

б) эллипс;

в) прямая линия.

146. В результате сложения гармонических колебаний, начальные фазы j1 и j2 которых отличаются на угол, равный 90º, возникает результирующее гармоническое колебание. При неравных амплитудах траектория движения результирующего колебания – это:

а) окружность;

б) эллипс;

в) прямая линия.

147. В результате сложения гармонических колебаний, начальные фазы j1 и j2 которых отличаются на угол, равный 90°, возникает результирующее гармоническое колебание. При x0 = y0 траектория движения результирующего колебания – это:

а) окружность;

б) эллипс;

в) прямая линия;

148. Материальная точка совершает гармоническое колебание с амплитудой А = 4 см и периодом Т = 2 с. Если смещение точки в момент времени, принятый за начальный, равно нулю, то точка колеблется в соответствии с уравнением (в СИ):

а) ;

б) ;

в) ;

г) .

149. Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами. При разности фаз в 270º амплитуда результирующего колебания равна:

а) x0 = 2А0;

б) ;

в) ;

г) .

150. Точка М одновременно колеблется по гармоническому закону вдоль осей координат ох и oy с различными амплитудами, но одинаковыми частотами (рис. 1). При разности фаз в 90º траектория точки М имеет вид:

а) 4;

б) 1;

в) 3;

г) 2.

151. Период колебаний математического маятника определяется соотношением . Изменится ли его ускорение, если его переместить из воздуха в воду?

а) не изменится;

б) изменится;

в) увеличится;

г) уменьшится.

152. Период колебаний математического маятника определяется соотношением . Изменится ли его ускорение, если его переместить из воздуха в масло?

а) не изменится;

б) изменится;

в) увеличится;

г) уменьшится.

153. Период колебаний математического маятника определяется соотношением . Изменится ли его частота, есл


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: