Гомогенный катализ

Часто гомогенные катализаторы представляют собой сложные металлосодержащие молекулярные соединения, структура которых позволяет осуществить тонкую настройку реакционной способности реагентов и достичь высокой селективности. Один из крупномасштабных промышленных процессов с применением гомогенного катализа – это частичное окисление параксилола и превращение его в терефталевую кислоту (см. рис. 6.2). В таком процессе катализатором служат соли кобальта и марганца. Большая часть конечного продукта подвергается самополимеризации с этиленгликолем и используется для производства полиэфирных тканей, корда для шин, контейнеров для соды и многих других полезных изделий. В промышленном процессе производства уксусной кислоты из метанола и моноксида углерода роль катализатора выполняет дикарбонилдииодид родия, позволяющий получить около 99% целевого продукта.

В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные вещества, и для их участия в реакции нужны эффективные катализаторы. Для такой цели весьма перспективно применение растворимых металло-органических соединений. Например, при помощи растворимых соединений молекулярного азота с оловом и молибденом удается осуществить синтез аммиака. Химические связи углерод–водород в соединениях типа метана и этана, нереакционных в обычных условиях, разрываются родий-, рений-, иридийорганическими комплексами, и тем самым повышается их реакционная способность.

Одно из направлений катализа связано с синтезом молекул, ядро которых состоит из нескольких химически связанных атомов металла. Из таких молекул формируются кластеры, размеры которых больше, чем молекул гомогенных катализаторов, но меньше, чем частиц металла, служащих гетерогенным катализатором. Во многих металлах – активных гетерогенных катализаторах,– а именно в таких, как родий, платина, осмий, рутений и иридий обнаруживается способность к образованию кластеров. Существует ряд кластеров, получивших название кубаны. Ядро молекул кубанов состоит из четырех атомов металла и четырех атомов серы, расположенных в вершинах куба. Структура кубаны получена для железа, никеля, вольфрама и других металлов. К кубанам относится, например, производное железа – ферродоксин, являющийся функциональной частью белков, катализирующих реакции с переносом электронов в биологических системах.

Многие биологические молекулы имеют одну из двух возможных геометрических структур, представляющих зеркальное отражение друг друга. Обычно лишь одна из таких хиральных структур биологически активна. Если сложная молекула содержит, например, семь хиральных углеродных атомов, а в процессе синтеза образуются все возможные хиральные структуры, то получится смесь 27 = 128 продуктов, из которых 127 могут быть неактивными или, еще хуже, давать нежелательные эффекты. Поэтому важно уметь синтезировать на каждом хиральном центре нужную структуру. Катализатор, обеспечивающий такой синтез, называется стереоселективным. В качестве примера можно привести синтез леводофы – соединения в виде стереоизомера аминокислоты (см. рис. 6.3). Молекула леводофы получается при стереоселективном присоединении водорода к двойной углерод-углеродной связи. Используемый при этом катализатор – растворимое соединение фосфина и родия – приводит к образованию конечного продукта с выходом 96%. Леводофа – эффективное средство лечения болезни Паркинсона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: