Виды пластинчатых теплообменников

Пластинчатые теплообменники бывают следующих видов:

- разборные пластинчатые теплообменники;

- паяные пластинчатые теплообменники;

- сварные и полусварные пластинчатые теплообменники.

вопрос 69. Интерференция света. Когерентность колебаний. Интерференция волн. Способы получения интерференционной картины. Интерференция в тонких плёнках. Полосы равной толщины и равного наклона.

Интерференция света – перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны, и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания. Понятие когерентности относится не только к колебаниям, но и к волнам. Если колебания напряженности электрических (и магнитных) полей в двух волнах когерентны, то эти волны являются когерентными. Например, две волны, пришедшие в данную точку от одного и того же передатчика, но различными путями, являются когерентными, если разность хода этих двух волн не меняется со временем. Вопрос о когерентности колебаний и волн играет принципиальную роль в явлении интерференции волн.

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания.

Когерентные колебания (Когерентные волны) - два колебания (или несколько колебаний), разность фаз между которыми не меняется со временем. Сложение когерентных колебаний, имеющих разность фаз, обусловливает изменение амплитуды суммарного колебания, то есть происходит преобразование фазовой информации интерферирующих волн в амплитудную структуру интерференционной картины.

В интерферометрах получение когерентных колебаний осуществляется разделением светового луча от источника света на несколько частей с помощью специальных оптических приспособлений, например посеребренных полупрозрачных пластин. Лучи одновременно отражаются от них и проходят сквозь них, а после отражения от зеркал, вновь соединяясь, дают интерференционную картину. По принципу разделения световых лучей, участвующих затем в интерференции, интерферометры бывают двухлучевые и многолучевые.

Электронная компонента испытывала также сильные когерентные колебания. По-видимому, эти процессы связаны с импульсным ускорением частиц в магнитосфере Меркурия.

Два колебательных процесса называются когерентными колебаниями, если они согласованно протекают во времени, так что разность их фаз остается постоянной.

Иначе говоря, это будут когерентные колебания, которые складываются по законам интерференции и дадут в итоге дифракционную картину. Мы видели, что частицы, малые по сравнению с длиной волны, дают индикатрису рассеяния в виде круга. Любой точечный источник света создает пространственно когерентные колебания. И сферические, и плоские волны обладают пространственной когерентностью. Сферические волны пространственно когерентны именно потому, что они как раз и представляют собой колебания, которые создаются точечным источником света. Пространственная когерентность плоских волн объясняется тем, что любой строго параллельный пучок плоских волн можно рассматривать как исходящий из бесконечно удаленного точечного источника. В описанном явлении скрыта одна из причин непригодности обычной электрической лампы накаливания для получения интерференционных картин: по размерам ее явно нельзя отнести к точечным источникам света. Таким образом, в точке складываются уже когерентные колебания.

Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: