Годовое изменение параметров Земли 4 страница

С учетом уравнения (5.3) соотношение (5.5) принима­ет вид:

π = w2 = γpv = γTαR = γТz = (dp/dρ) s. (5.6)

Совершенно очевидно из сравнения соотношений (5.5) и (5.6), что (5.6) является более общим, так как содер­жит в себе уравнение (5.3). Поэтому, учитывая универ­сальность равенств (5.5) и (5.6), следует ожидать что уравнение (5.3) может быть использовано не только дня описания состояния реального газа или пара, но и для описания состояния жидких и твердых тел, то есть так­же может оказаться универсальным.

Принципиально важно указать на то, что равенство (5.5) было получено Лапласом в предположении, что распространение звука в веществе представляет со­бой волновой процесс, который происходит без обме­на тепловой энергией между звуковой волной и ок­ружающей средой. Подобные процессы получили в классической термодинамике название адиабатных.

Таким образом, факт наличия в равенствах (5.5), (5.6) или в каких-либо иных соотношениях термодинамики параметра γ следует считать указанием на то, что рас­сматриваемый процесс является физически подобным процессу распространения звука в веществе, т.е. яв­ляется волновым и притом адиабатным.

Однако хорошо известно, что любой волновой про­цесс характеризуется взаимопревращаемостью кинети­ческой и потенциальной энергий. Представив равенство (5.6) в виде [124]:

w2 = γpv = ypV/m = γTZ/m,

где V, m – объем и масса вещества термодинамической системы, находим:

mw2 = γpV = γТZ.

Отсюда следует ранее неизвестное соотношение:

2Е = γП, (5.7)

идентичное равенству (3.38), полученному ранее в ме­ханике, где в общем случае Е = mw2 /2 + Jω2/2 – кине­тическая, а П = pV= TZ – потенциальная энергия ТДС; J – момент инерции частицы; ω – угловая скорость ее вращения вокруг своей оси. При этом w2 = w2TP + w2r. Таким образом, очевидно, что параметр

γ = cp/cv = 2E/П = f (p,T),(С)

действительно служит количественной мерой взаимо­превращаемости кинетической и потенциальной энергий в волновом адиабатном процессе распростра­нения звука в веществе. Из физики [35,125] известно, что отношение величин этих энергий определяет форму траектории тела (частицы) в пространстве, т.е. в дан­ном случае — форму звуковой волны.

С учетом соотношения (5.7) закон сохранения полной энергии ТДС для волнового адиабатного процесса рас­пространения звука в веществе принимает вид;

W = E ± П = (γ ± 2) П/ 2= (γ ± 2) E/γ = const, (5.8)

где знаки ± учитывают знак потенциальной энергии.

Зависимость γ = f (p,T),присутствующая в равенствах (5.5)÷(5.8), как очевидно, должна представлять собой периодическую функцию, изменяющуюся в простран­стве и во времени. Однако из справочной литературы [126] этого явно не следует. В связи с этим определить истинную форму звуковой волны по справочным дан­ным до сих пор не представлялось возможным.

Являясь наукой, описывающей процессы, происходя­щие (как очевидно) в пространстве и во времени, клас­сическая термодинамика, тем не менее, не оперирует временем как параметром состояния ТДС. Между тем, ввести время в соотношения термодинамики не состав­ляет особого труда. В самом деле, поскольку удельная потенциальная энергия ТДС эквивалентна удельной ра­боте, производимой ТДС над окружающей средой, то с помощью уравнения (5.3) можно записать:

π = l = pv = Tz.

Используя это равенство, можно представить удель­ную работу в виде:

l = lt/t = Nt, (5.9)

где N – удельная мощность; t – время протекания про­цесса. В этом случае равенство (5.1) принимает вид:

du = Tds – pdv = TdsNdt. (5.10)

Однако даже такие простейшие временные преобразо­вания, какими являются соотношения (5.9), до сих пор в классической термодинамике не применялись. Возвра­щаясь к равенству (5.1), следует указать, что на его ос­нове, с помощью преобразований Лежандра [121] могут быть получены еще три так называемых характеристи­ческих уравнения классической термодинамики, яв­ляющихся выражениями полных дифференциалов:

удельной свободной энтальпии

dg = –sdT + vdp; (5.11)

удельной энтальпии

di = Tds + vdp; (5.12)

удельной свободной энергии

df = –sdT – pdv. (5.13)

Напомним о том, что преобразования Лежандра по­зволяют установить, является ли данное дифференци­альное соотношение полным дифференциалом функции. Для того чтобы установить это в отношении, например, равенства ( 5.12), достаточно к обеим частям равенства (5.1) прибавить выражение полного дифференциала d (pv). В результате получим:

du +d (pv)= Tdspdv + d (pv) = Tds + vdp.

Так как левая часть полученного выражения по свой­ству удельной внутренней энергии (как функции термо­динамических параметров) заведомо является полным дифференциалом, то полным дифференциалом является и его правая часть. Поэтому, обозначая di = du + d (pv), в результате находим, что di = Tds + vdp. Аналогично мо­гут быть получены и проверены соотношения (5.11)–(5.13).

Основываясь на известном из математики [121] необ­ходимом и достаточном условии полного дифференциа­ла (выраженным равенством накрест взятых частных производных), из соотношений (5.1), (5.11), (5.13) нахо­дим следующие дифференциальные соотношения клас­сической термодинамики в частных производных, из­вестные как уравнения Максвелла [121,122]:

(dT/dv) s = – (dp/ds) v, (5.14)

(ds/dp) T = – (dv/dT) p, (5.15)

(dT/dp)s = (dv/ds) p, (5.16)

(ds/dv) T = (dp/dT) v. (5.17)

Уравнения Максвелла широко используются в класси­ческой термодинамике для определения изменений па­раметров состояния термодинамической системы, по­зволяя сократить количество опытных данных о физических свойствах вещества, обнаружить возможные ошибки, возникающие в экспериментах или расчетах, заменить в уравнениях (при необходимости) одни пара­метры состояния другими.

Столь же важную роль в классической термодинамике играют и удельные теплоемкости [121,122]:

cp = T (ds/dT) p, (5.18)

cv = T (ds/dT) v. (5.19)

При этом оказывается справедливым равенство:

ср – cv = T (dp/dT) v (dv/dT) p. (5.20)

Используя, например, уравнение Клапейрона (5.4), с помощью равенства (5.20) можно получить известную формулу Майера для идеального газа:

cp – cv = R. (5.21)

Параметры состояния ТДС, которыми только и опери­рует классическая термодинамика, являются среднеста­тистическими (т.е. вероятностными) величинами. По­этому следует ожидать, что известная в КТД статистическая формула Больцмана для энтропии [122]:

S = kln (W), (5.22)

где k – постоянная Больцмана, W – отношение веро­ятностей состояния ТДС) может оказаться не единст­венной в ряду себе подобных. Формула (5.22), которая в классической термодинамике фактически не использу­ется, позволяет осуществлять переход с макро- на микроуровень описания материи и служит, таким обра­зом, своеобразным масштабным соотношением термо­динамической теории.

В начале главы 4 упоминалось, что классическая тер­модинамика способна описывать процессы самой разно­образной физической и химической природы. Действи­тельно, в некоторых работах по классической термодинамике изредка можно встретить уравнения, за­писанные в так называемом обобщенном виде. Напри­мер, в работе [121] дается обобщенная форма записи уравнений Максвелла (5.14)–(5.17). Это достигается тем, что обозначают у ≡ р, а х ≡ v. При этом у играет роль обобщенного потенциала, а х ≡ – обобщенной коор­динаты.

Но если быть последовательным до конца, то необхо­димо признать, что в таком случае любые соотношения классической термодинамики могут быть представлены в обобщенном виде. Фактически это означает, что лю­бые соотношения КТД могут быть использованы для описания не только тепловых, но и механических, электромагнитных и гравитационных взаимодейст­вий.

К сожалению, автору до сих пор не приходилось встречать применения таких параметров, как энтропия и абсолютная температура ни в механике, ни в оптике, ни в электродинамике, ни в каких-либо других не тер­модинамических теориях. Изложенное подводит к вы­воду о том, что классическая термодинамика, являясь по существу универсальной теорией природных взаимо­действий, используется не в полную силу, по-видимому, вследствие ряда спорных и противоречивых обстоя­тельств, часть из которых отмечена в ходе данного ана­лиза. Принципиально важным из них является проблема универсального уравнения состояния ТДС. Именно поэтому указанная проблема должна быть исследована особо.

5.2. Универсальное уравнение состояния

вещества термодинамической системы

Отсутствие в классической термодинамике универ­сального уравнения состояния — ТДС вовсе не означа­ет, что такого уравнения не существует. Результаты не­которых [127] новейших исследований (не выходящих, однако, за рамки привычных представлений КТД) ука­зывают на то, что вероятность существования универ­сального уравнения состояния ТДС чрезвычайно вы­сока. Попытаемся отыскать это уравнение. Для этого запишем уравнение состояния реального газа (5.3) в ви­де [128]:

π = pv = Tz, (5.23)

где π – удельная потенциальная энергия реального газа. Из соотношения (5.23) следует, что в общем виде

π = f1 (p,v) = f2 (Tz). (5.24)

Дифференцируя все части этого соотношения, нахо­дим:

dπ = (dπ/dp) v dp + (dπ/dv) p dv = (dπ/dT)zdT + (dπ/dz)Тdz. (5.25)

С другой стороны, дифференцируя все части равенст­ва (5.23), получаем:

dπ = d(pv)= d(Tz) (5.26)

или

= vdp + pdv = zdT + Tdz. (5.26a)

Сравнивая равенства (5.25) с (4.26а), находим коэф­фициенты:

v = (dπ/dp) v; p = (dπ/dv) p;

z = (dπ/dT) z; T = (dπ/dz) Т. (5.27)

Представим равенство (5.26а) в виде:

Tdz – pdv = –zdT + vdp. (5.28)

Важно определить, являются ли обе части этого выра­жения полными дифференциалами? Для этого восполь­зуемся преобразованиями Лежандра. Прибавляя к обеим частям (5.28) полные дифференциалы, выраженные ра­венством (5.26), находим тождество:

Tdz + vdp = Tdz + vdp. (5.29)

Применяя теперь к тождеству (5.29) необходимое и достаточное условие полного дифференциала, получаем:

(dT/dp) z = (dv/dz) p. (5.30)

С учетом равенств (5.27) для коэффициентов Т и v из (5.30) находим:

d/dpz (dπ/dz) Т = d/dzp∙(dπ/dp)γ,

откуда, заменяя индексы Т → р, v → z, получаем:

d2π/dpdz = d2π/dzdp.

Полученное выражение является известным матема­тическим равенством. Поэтому можно заключить, что выражение (5.29), а следовательно и обе части выраже­ния (5.28) являются полными дифференциалами. При­меняя необходимое и достаточное условие полного дифференциала к обеим частям равенства (5.28), полу­чаем:

(dT/dv) z = – (dp/dz) v, (5.31)

(dz/dp) T = – (dv/dT) p, (5.32)

Сравнивая уравнение (5.32) с уравнением Максвелла (5.15), находим [129]:

(ds/dp) Т = (dz/dp) Т = – (dv/dT) p.

Отсюда получаем:

(ds/dz) Т = ds/dz = 1.

Это означает, что dz – ds в процессе Т = const. Приме­няя вновь к соотношению (5.26а) преобразования Ле­жандра, вычитая из обеих его частей полные дифферен­циалы d (Tz) = d (pv), получаем тождество:

zdT – pdv ≡ –zdTpdv. (5.33)

Применяя к этому тождеству необходимое и доста­точное условие полного дифференциала, получаем:

(dz/dv) T = (dp/dT) v. (5.34)

С учетом равенств (5.27) для z и р из равенства (5.34) получаем (заменяя индексы zv, p → Т):

d/dvТ (dπ/dT) v = d/dTv (dπ/dv) Т,

или

d2π/dvdT = d2π/dTdv.

Тем самым доказано, что выражение (5.33) также яв­ляется полным дифференциалом.

Таким образом установлено, что все исследованные выражения (5.28), (5.29) и (5.33) являются полными дифференциалами. Необходимо, однако, доказать, что dz = ds не только в процессе Т = const, но и в процессах р = const и v = const.

Проще и нагляднее всего это можно сделать, если изо­бразить процесс Т = const в диаграмме T-S (рис. 70). То­гда расстояние между двумя точками 1, 2 на кривой Т = const дает равенство ∆z = ∆s. Если теперь через любую из точек, расположенных на кривой Т = const, провести кривые р = const и v = const, то для соответствующих точек 1, 2 на этих кривых также окажется, что ∆z = ∆s. Переходя к бесконечно малым, получим dz = ds.

Тот же результат можно получить, если сравнить пол­ные дифференциалы:

du = Тds – pdv, (5.1)

di = Тds + vdp, (5.12)

du' = Тdz – pdv, (5.28)

di' = Тdz + vdp, (5.29)

где du', di' – просто обозначения полных дифференциалов (5.28), (5.29).

Из выражений (5.1), (5.28) для процесса v = const находим:

(du/ds) v = (du'/dz) v = Т.

Отсюда следует:

du/ds = du'/dz.

Подставляя в числители этого выражения соотношение (5.1), (5.28), получаем dz = ds.

Аналогичным образом с помощью равенств (5.12), (5.29)можно показать, что в процессе р = const также dz = ds. Это свидетельствует о том, что dz = ds в любых тер­модинамических процессах. Поэтому, интегрируя ра­венство dz = ds в пределах 1 - 2 состояния ТДС, в каких-либо процессах (Т = const, p = const или v = const), на­ходим с учетомобо- Рис. 70.значения z = Rα (где R –const):

z2 – z1 = s2 – s1 = R(α1 – α2). (5.35)

В графическом изображении (рис. 71) равенство (5.35) представляет собой уравнение прямых, проходящих в координатах z – α и s – α через начала координат и точки 1 и 2 под одинаковыми углами наклона φ = arctg(R) = const этих прямых к осям α. Общий вид урав­нений этих прямых есть z = s = Rα.

С получением равенства z = S = Rα и с учетом уравне­ния (5.31), уравнение (5.23) принимает вид:

π = pv = Ts = Nt. (5.36)

Равенство (5.36) содержит пространственную (v)и временную (t)характеристики ТДС. В связи с этим изла­гаемая далее термодинамическая теория учитывает пространственно-временную сущность любых природных взаимодействий.

Прежде чем будет оп­ределена действитель­ная роль уравнения (5.36) в термодинамике, проведем дополнтельную провер­ку, смысл которой за­ключается в том что если это уравнение не протии-воречит класссической термоди-намике, то с его помощью могут Рис. 71. быть получены любые из извест­ных в КТД соотношений. Для примера с помощью урав­нения (5.36) выведем равенство (5.20):

cp – cv = T (dp/dT)v∙(dv/dT)p. (a)

Дифференцируя первые три части уравнения (5.36), получаем:

= pdv + vdp = Tds + sdT. (b)

Дифференцируя все части уравнения (b) по Т, сначала при р = const, а затем при v = const, и вычитая почленно полученные результаты, с учетом равенств (5.18) и (5.19) находим

(dπ/dT) p (dπ/dT) v = p (dv/dT) pv (dp/dT) v = T [(ds/dT) p (ds/dT) v ] = cp – cv. (c)

Применяя к выражению в квадратных скобках равен­ства (с) известную формулу математики [130]:

(dz/dx) u = (dz/dx) y + (dz/dy) x (dy/dx) u

и полагая в ней z ≡ s, x ≡ Т, и ≡ р и уv, получаем:

(ds/dT) p (ds/dT) v = (ds/dv) T (dv/dT) p. (d)

Заменяя в выражении (d) с помощью уравнения Мак­свелла (5.17):

(ds/dv)Т = (dp/dT)v

и подставляя полученный результат в соотношение (с), получаем формулу (а).

Используя теперь равенство (а), получим формулу Майера (5.21):

cp – cv= R (е)

Полагая s = const в уравнении рv = Ts, находим производные (dp/dT)v = s/v; (dv/dT)p = s/p, подставляя которые в равенство (а), получаем

рcv)s = Ts/v∙s/p = s = αR.

Отсюда при α = 1 следует формула Майера (е) для идеального газа.

Итак, проверка показала, что уравнение pv = Ts не противоречит классической термодинамике. Более де­тальные исследования также подтверждают этот вывод. Следовательно, уравнение (5.36) может теперь на закон­ных основаниях использоваться в дальнейших выклад­ках.

Прежде всего, определим роль параметра s = αR = f(p,T) в этом уравнении. Поскольку газовая постоянная R = 8314/ µ, [ Дж/кг∙К° ], где µ [ кг/моль ]— молекулярная масса вещества, то удельная энтропия

s = αR = α∙ 8314 /µ =f(p,T), [ Дж/кг∙К° ]

есть параметр состояния ТДС, который устанавливает взаимосвязь между физическими (α = f (p,T)) и хими­ческими (µ) свойствами вещества термодинамической системы. В этом заключается одно из важнейших назна­чений удельной энтропии в термодинамике, чем и объ­ясняется столь успешное ее применение в физической химии. С другой стороны, удельная энтропия соответст­вует удельной работе, производимой термодинамиче­ской системой над окружающей средой (либо окру­жающей средой над термодинамической системой) при изменении температуры на один градус, чем объясняет­ся успешное применение термодинамики и в нехимиче­ских дисциплинах.

При анализе равенств (5.3), (5.5) и (5.6) было высказа­но предположение о том, что уравнение (5.3) может ока­заться одинаково пригодным для описания состояния твердых, жидких, паро- или газообразных ТДС, то есть может оказаться в этом смысле универсальным.

Чтобы убедиться в этом проведем оценку величины параметра α = f(p,T), присутствующего в указанных ра­венствах для подобных веществ, нахо­дим:

α = w2/γRT = w2µ/γ∙ 8314 Т.

Используя данные работы [122], расчетом по этой фор­муле находим:

• для стали: (Т = 293 Ко; γ = 1; µ = 56 кг/моль; w = 5130 м/с), α = 605;

• для воды: (Т= 293 K°, γ = 1; µ = 18 кг/моль; w= 1505 м/с), α = 16,74;

• для газообразного водорода: (Т = 293 К°; γ = 1,4; µ = 2 кг/ моль; w = 1505 м/с), α = 1;

• для водяного пара в критической точке: (Т = 647,3 К°; γ = 1; µ =18 кг/моль; w = 260 м/с), α = 0,224.

Эти примеры обнаруживают значительные расхож­дения в величинах параметра α = f (p,T) в зависимости от фазового состояния рассмотренных веществ. Они, в частности, свидетельствуют о сжимаемости твердых и жидких тел. С другой стороны, они показывают, что равенства (5.5), (5.6), содержащие этот параметр, при­годны для расчетов квадрата скорости звука в любых веществах. Следовательно, такой же универсальностью обладает равенство (5.3), а также и уравнение (5.36). Присутствие в уравнении (5.36) удельной энтропии, как наиболее общего параметра состояния ТДС, позволяет считать это уравнение универсальным уравнением со­стояния ТДС, находящейся в твердом, жидком, паро- или газообразном состояниях. В связи с этим уравне­ние (5.36) приобретает значение тождества термоди­намики.

5.3. Система законов

новой термодинамики

Располагая тождеством термодинамики, можно уточ­нить математические выражения и физический смысл основных законов новой термодинамики. Дифференци­руя все части тождества (5.36), получаем:

= pdv + vdp = Tds + sdT = Ndt + tdN.

Отсюда находим:

Tds – pdv = – sdT + vdp = TdsNdt = – sdT + tdN. (5.37)

Учитывая равенства (5.1), (5.10) и (5.11), выражение (5.37) можно представить в виде

du = dg = Тdspdv = –sdT + vdp = Tds – Ndt = –sdT + tdN =

= δq – δl = –δqTp + δlTp = 0 (5.38)

где δqTp и δlTp, – удельные теплота трения и работа тре­ния микрочастиц в веществе термодинамической систе­мы.

Равенство нулю выражения (5.38) следует из сущест­вования принципа эквивалентности теплоты и работы, одинаково справедливого для процессов внешнего и внутреннего энергообменов. Оно вытекает также из ра­венств (5.27)÷(5.34). Соотношение (5.38) представляет собой развернутое математическое выражение первого закона новой термодинамики.

Физическая сущность этого закона заключается в том, что при любых взаимодействиях ТДС с окружаю­щей средой внешний и внутренний энергообмены, про­исходящие в термодинамической системе, взаимно скомпенсированы.

Из первого закона новой термодинамики следуют три самостоятельных группы равенств:

du =dg=0 (5.39)

δq = δl =Tds = pdv = Ndt, (5.40)

δgTp = δlTp =sdT = vdp = tdN. (5.41)

Выражение (5.39) указывает на то, что при любых взаимодействиях термодинамической системы с окру­жающей средой удельные внутренняя энергия и свобод­ная энтальпия ТДС остаются постоянными.

В связи с тем, что du = dg = 0, то с учетом равенств (4.40) и (5.41), приобретают расширенные математиче­ские формулировки и выражения полных дифференциа­лов (5.12), (5.13) для:

удельной энтальпии

di = Tds + vdp = Tds + sdT = Tds + Ndt = pdv + sdT = pdv + vdp = Ndt + vdp = Ndt + sdT = δq +δlTp = δq + δqTp = δl + δgTр; (5.42)

удельной свободной энергии

df = –sdT – pdv = –sdT – Tds = –sdT – tdN = – vdp – pdv = –tdN – pdv = –tdN – Tds = –δqTp – δl = –δqTp – δg = –δlTp – δl. (5.43)

Таким образом, в новой термодинамике di = –df. Со­отношение (5.6) принимает вид:

ns = w2 = γpv = γTαR = γTs = (dp/dρ)s. (5.44)

При этом остаются в силе уравнения (5.7) и (5.8), оп­ределяющие особенности протекания волновых адиа­батных процессов в термодинамической системе, а так­же соотношения для определения удельных теплоемкостей (5.18)-(5.20).

Использование тождества термодинамики (5.36) фак­тически означает, что модель идеального газа и уравне­ние состояния идеального газа в форме Клапейрона мо­гут применяться в ней лишь в качестве исключения при оценочных расчетах только газообразных ТДС в достаточно узком диапазоне температур и давлений. Во всех остальных случаях (то есть для твердых, жидких, паро- или газообразных веществ, взаимодействующих с окружающей средой при любых значениях температуры давления), должно использоваться универсальное уравнение состояния ТДС.

В новой термодинамике могут широко использоваться зависимости статистической теории типа (5.22), так как они не противоречат физической сущности параметров состояния ТДС как вероятностных величин.

Проанализируем полученные результаты подробнее, Выражение (5.40) содержит в качестве следствия математическую формулу второго закона классической тер­модинамики (5.2).

Поэтому можно сказать, что выражение (5.40) пред­ставляет собой расширенную математическую формулировку второго закона новой термодинамики для про­цессов внешнего энергообмена с окружающей средой. Выражение (5.41) получено впервые.

Оно указывает на то, что при любых взаимодействи­ях ТДС с окружающей средой, внутри вещества термо­динамической системы одновременно с процессами внешнего энергообмена происходят процессы внут­реннего энергообмена, связанные с работой трения микрочастиц и выделением либо поглощением теп­ лоты трения.

Поэтому следует считать, что выражение (5.41) пред­ставляет собой расширенную математическую форму­лировку второго закона новой термодинамики для процессов внутреннего энергообмена в термодинами­ческой системе (то есть процессов трения). Из равенств (5.40) и (5.41) следует, что характерный для классиче­ской термодинамики принцип возрастания энтропии в новой термодинамике исчезает, что свидетельству­ет об ошибочности этого принципа как всеобщего закона Природы.

Если подставить в тождество термодинамики (5.26) вместо любого сомножителя или члена 0 или ∞, то тож­дество теряет смысл, то есть перестает существовать. Следовательно, известный в классической термодина­мике принцип недостижимости нуля абсолютной тем­пературы является лишь частным проявлением принци­па неуничтожимости материи и в качестве третьего закона новой термодинамики должен быть распро­странен не только на абсолютную температуру, но и на любые другие параметры состояния термодинами­ческой системы, устанавливая для них границы сущест­вования между 0 и ∞, то есть 0 < аi < ∞, где αiобо­значение i-го параметра состояния.

Наконец, в качестве четвертого закона новой термо­динамики могут быть использованы уравнения Мак­свелла (5.14)-(5.17), а также подобные им уравнения, со­держащие параметры N и, которые могут быть легко получены из полных дифференциалов соответствующих характеристических функций (5.38), (5.42), (5.43) по правилу равенства накрест взятых производных:

(dT/dt)s = – (dN/ds)c; (ds/dN)T =(dt/dT)N;


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: