Раздел 2. Источники энергии и генераторы

Глава 3. Тепловые двигатели. § 3.1. Топливные ресурсы. Классификация топлив. Состав топлива. Топливом называется горючее вещество, используемое в качестве источника получения теплоты в энергетических, промышленных и отопительных установках.
В зависимости от типа реакций, в результате которых выделяется теплота из топлива, различают органическое и ядерное топливо.
В настоящее время и по прогнозам до 2030 г. органическое топливо является основным источником энергии (теплоты) для промышленного использования. В органических топливах теплота выделяется в результате химической реакции окисления его горючих частей при участии кислорода, а в ядерных топливах – в результате распада (деления) ядер тяжелых элементов (урана, плутония и т.д.).
Таблица 3.1. Добыча органического топлива в 2007 г.

  Вид топлива
  Твердое Жидкое Газообразное
Во всем мире, млрд.т 5,1 3,8 2,6 трлн.куб.м
Россия, млн.т 314,4   653,1 млрд.куб.м.

В 2008 г. добыча нефти в России достигла 504,1 млн. т., газа 635 млрд. куб.м., угля 322 млн.т. По мировым оценочным прогнозам геологические запасы минерального (органического) топлива превышают 12,5 трлн.т. (12500 млрд.т). При современном уровне добычи этих ресурсов должно хватить примерно на 600-1000 лет. Эти запасы состоят на 60% из угля, 27% нефти и газа, а также сланцев и торфа. С разведанными запасами дела обстоят не так оптимистично. Следует иметь ввиду, что приведенные ниже данные достаточно ориентировочные. Разведанные запасы угля составляют 5 трлн.т., а достоверные около 1,8 трлн.т. По достоверным разведанным запасам Россия (200 млрд.т) занимае третье место в мире после США (440 млрд.т) и Китая (272 млрд.т). При современных темпах добычи угля хватит на 400 лет. Запасы нефти на начало столетия оценивались в 139,7 млрд.т. Кроме того, прогнозные запасы нефти из горючих сланцев и битуминозных песков оцениваются в 750 млрд.т. Но затраты на добычу такой нефти будут значительно выше. По разведанным запасам на первом месте стоит Саудовская Аравия (25,4 млрд.т), Ирак (11 млрд.т), Кувейт (9,3), Иран (9,1), Венесуэлла (6,8), Россия (4,8 млрд.т), Китай (2,4 млрд.т), США (2,4 млрд.т) и др. Обеспеченность мировой экономики разведанными запасами нефти составляет примерно 45 лет. Для России этот показатель составляет 23 года, для Саудовской Аравии 90 лет и т.д. Разведанные запасы газа на начало века составили 144 трлн.куб.м. На Россию приходится 39,2%, Западную Азию 32%, Северную Африку 6,9%, Латинскую Америку 5,1% и т.д. По странам: Россия 47 600 млрд.куб.м., Иран 21200 млрд.куб.м, США 4654 млрд.куб.м., Алжир 3424 млрд. куб.м, Туркмения 2650 млрд.куб.м., Норвегия 3800 млрд.куб.м, Казахстан 1670 млрд.куб.м. и т.д.

**Дополнительный материал для самостоятельного изучения. **

Но ситуация на мировом газовом рынке начинает принципиально меняться, причем не в пользу России. В 2009 г., несмотря на кризис, добыча газа в Катаре увеличилась на 37,6%, в Норвегии – на 13%, а в США – на 3,7%. В России за тот же период она рухнула на 12,4%.

США подняли добычу газа на своей территории вплотную к уровню собственного потребления, составляющего около 650 млрд. кубометров в год, и многие эксперты склонны говорить о революционных изменениях на американском, а возможно и мировом газовом рынке. Это подтверждается намерениями США отказаться от закупок сжиженного газа за рубежом, в том числе и от поставок с российского Шток-мановского месторождения.

Причиной прорыва стали принципиальные изменения в технологии добычи так называемого сланцевого газа. Это горючий природный газ, содержащийся в сланцевых породах. Его промышленная добыча долгое время была затруднена из-за высокой сложности и стоимости извлечения. Ситуация изменилась в начале 2000-х, когда получили развитие новые технологии добычи.

До последнего времени основным способом добычи природного газа было вертикальное бурение, позволяющее извлекать газ из природных подземных резервуаров, встречающихся далеко не везде. Это обеспечивало существенные преимущества странам, на территории которых имеются такие месторождения. Со сланцами все обстоит иначе – они есть практически везде. Современные технологии горизонтального бурения и гидравлического разрыва пластов позволяют создавать в них искусственные полости, в которые устремляется газ, содержащийся в сланцевой породе. Важной особенностью данного способа остается пусть и не самая низкая, но относительно стабильная стоимость добычи, составляющая около $100-120 на 1000 кубометров. При этом используемая технология существенно расширяет географию добычи, снижая привязку потребителей к крупнейшим поставщикам, диктующим цены.

Все это существенно бьет по позициям "Газпрома". Его основные месторождения, осваиваемые обычным способом, находятся в труднодоступных местах, что требует значительных капитальных затрат на их содержание. Не меньше затрат связано и с необходимостью строительства протяженных трубопроводов.

Отказ США от сжиженного газа уже привел к резкому падению спотовых (текущих, срочных) цен на голубое топливо. В результате в проигрыше оказались европейские клиенты "Газпрома", заключившие долгосрочные контракты по высоким ценам по принципу take-or-pay ("бери или плати"), привязанным к стоимости нефти. Серьезные проблемы могут ждать в скором времени и самого газового монополиста, а возможно и весь российский ТЭК. Если в странах Европы развернется собственная добыча и импорт сланцевого газа, потребность в газпромовском топливе будет сокращаться. Российской компании придется снижать цены до уровней, сопоставимых с ценами на сланцевый газ. В условиях строительства новых дорогостоящих газопроводов в обход Белоруссии, Польши и Украины это может обернуться невосполнимыми убытками. Возможно, скоро эти перемены потребуют от "Газпрома" изменения принципа take-or-pay или даже упразднения системы долгосрочных контрактов.

Пока же российская сторона продолжает отстаивать прежние позиции. В декабре прошлого года заместитель главы "Газпрома" Александр Медведев заявил, что компания отклонила все запросы европейских потребителей на изменение принципа take-or-pay в уже заключенных контрактах. По его словам, европейский спотовый рынок по своей структуре не может служить альтернативой поставкам в рамках долгосрочных контрактов. В минувшую субботу в пользу долгосрочных контрактов высказался и глава Минэнерго РФ Сергей Шматко, по словам которого, эта система является "одним из самых великих завоеваний нашего сотрудничества с Европой". Министр четко дал понять, что "Газпром" не готов учитывать снизившиеся спотовые цены в текущих долгосрочных контрактах. "Газпром" должен оперативно реагировать на изменившиеся условия на рынке, но ни в коем случае систему долгосрочных контрактов, которая у нас была создана, разрушать нельзя", – подчеркнул министр, при этом не уточнив, в чем конкретно должна заключаться реакция на изменения.

В то же время глава Минэнерго признал растущую роль на рынке сланцевого газа, отметив, что американский сланцевый газ стал перенаправляться в Европу. "США займут свое место в европейском балансе, но мы должны беречь, обстраивать и развивать дальше принципиальную систему долгосрочных контрактов с Европой, и наши европейские коллеги прекрасно это понимают", – пояснил Шматко.

Завидное упорство, проявляемое российскими газовиками, может объясняться лишь уверенностью в том, что российский газ по-прежнему будет составлять значительную долю в газовых балансах европейских стран.

В отличии от США, в Европе разработка сланцевых полей затруднена высокой заселенностью территорий. Добыча сланцевого газа требует бурения большого количества скважин, с закачиванием в них воды и различных химических веществ. Экологов пугает опасность обводнения подземных пластов и прочие побочные эффекты процесса добычи. Все это создает множество проблем правового и экологического характера.

Но будет ли все так оставаться и далее, не очевидно. Применяемые технологии и материалы постоянно совершенствуются. Возможно, в скором времени из процесса удастся исключить использование вредных веществ. Весьма вероятны и другие усовершенствования метода. Уверенность в этом подтверждается высочайшим технологическим потенциалом, накопленным в нефтегазодобывающей и сервисной отраслях, а также стоящими на кону колоссальными выгодами.

Согласно данным Международного энергетического агентства, запасы сланцевого газа в Европе составляют 16 трлн кубометров. Европейцы уже приступили к их исследованию на предмет промышленного использования. В настоящий момент этим активно занимается Исследовательский центр по вопросам геологии в Потсдаме. Первые результаты его работы будут сформулированы в 2012 году.

Значительно более быстрыми на подъем оказались частные компании. Exxon Mobil ведет активные буровые работы в Нижней Саксонии (ФРГ) и Венгрии. Австрийская OMV исследует недра невдалеке от Вены, Shell присматривается к Швеции, а BP и Centrica ищут сланцевый газ в Великобритании. В поле зрения мировых нефтегазовых гигантов находятся и другие страны ЕС. Сланцевый бум затронул и такого важнейшего партнера российских газовиков как Китай. В ноябре прошлого года КНР заключила с США договор о совместной разработке собственных сланцевых полей.

Даже с учетом не до конца ясных перспектив добычи сланцевого газа в Европе вся эта история показывает, как наличие высоких технологий позволяет теснить тех, кто ими не обладает, с их традиционных рынков. Фактический отказ США от импорта сжиженного газа и связанное с этим подвисание Штокмановского месторождения, должно стать для "Газпрома" поводом задуматься над собственной политикой – теперь уже в отношении Европы и Китая. В запасе у российского концерна не так уж много времени. Технологии добычи газа находятся в постоянном развитии, и то, что еще недавно казалось невозможным, в скором времени может оказаться свершившимся фактом. А Северный и Южный "потоки" – самым дорогим в мире металлоломом. По суммарным разведанным запасам нефти и газа на первом месте стоит Россия, на втором Саудовская Аравия, на третьем Иран. Но условия добычи этих видов топлива в России значительно более тяжёлые (заболоченные места Сибири, низкая температура в течении большей части года и т.п.). Запасы ядерного (неорганического) топлива оцениваются в 4 млн.т. Австралия обладает 23% всех запасов, страны СНГ 33% (на долю России приходится 4,3%, 170000 т.), 16% имеет ЮАР и Намибия, 11% Канада и 9% США. При современных темпах потребления ядерного топлива (55000 т в год) его хватит на 70 лет. Следует, однако иметь в виду, что общие геологические запасы урана оцениваются в 40 000 млрд.т условного топлива, что в несколько раз превышает запасы органического топлива. Но для использования природного урана нужны другие реакторы, чем используемые в настоящее время (об этом подробнее будет сказано при изучении ядерных реакторов).

** **

Таблица 3.2. Классификация органических топлив по агрегатному состоянию.

Топливо Агрегатное состояние
  Твердое Жидкое Газообразное
Природное Дрова, торф, бурые и каменные угли, антрацит, горючие сланцы Нефть Природный газ
Искусственное Древесный уголь, полукокс, кокс, угольные и торфяные брикеты Мазут, керосин, бензин, соляровое масло, газойль Газы нефтяной, коксовый, генераторный, доменный, газ подземной газификации

Твердые и жидкие топлива состоят из горючих (углерода - С, водорода - Н, летучей серы - S) и негорючих (азота - N и кислорода - О) элементов и балласта (золы - А, влаги - W). Сера состоит из двух компонентов-органической и колчеданной.
Элементарный состав твердого и жидкого топлива дается в процентах к массе 1 кг топлива. При этом различают рабочую, сухую, горючую и органическую массу топлива.
Рабочая масса – это масса и состав топлива, в котором оно поступает к потребителю и подвергается сжиганию.
Состав рабочей, горючей, сухой и органической массы обозначается соответственно индексами "р", "с", "г" и "о" и выражаются следующими равенствами:

Ср + Нр + Sрл + Nр + Oр + Aр + Wр = 100 %; (3-1)
Сс + Нс + Sсл + Nс + Oс + Aс = 100 %; (3-2)
Сг + Нг + Sгл + Nг + Oг = 100 %; (3-3)
Со + Но + Sоорг + Nо + Oо = 100 %. (3
-4)

Органическая масса топлива в отличии от горючей массы содержит только органическую серу и не включает колчеданную. Коэффициенты пересчета состава топлива из одной массы в другую приведены в табл. 3.3.
Т а б л и ц а 3.3

Заданная масса топлива Коэффициенты пересчета на массу  
  рабочую горючую сухую
Рабочая   100/[100 - (Aр + Wр)] 100/(100 - Wр)
Горючая [100 - (Aр + Wр)]/100   (100 - Aс)/100
Сухая (100 - Wр) / 100 100 / (100 - Aс)  

Газообразное топливо представляет собой смесь горючих и негорючих газов. Горючая часть состоит из предельных (СnH2n+2) и непредельных (СnH2n) углеводородов, водорода Н2, окиси углерода СО, и сернистого водорода (Н2S). В состав негорючих элементов входит азот (N2), углекислый газ (СO2) и кислород (О2). Составы природного и искусственного газообразных топлив различны. Природный газ характеризуется высоким содержанием метана (СH4), а также небольшого количества других углеводородов: этана (С2H6), пропана (С3H8), бутана (С4H10), этилена (С2H4), и пропилена (С3H6). В искусственных газах содержание горючих составляющих (водорода и окиси углерода) достигает 25-45%, в балласте преобладают азот и углекислота 55-75%.
Состав газообразного топлива задается в объемных долях и в общем виде можно записать следующим образом: SСnH2n+2 + SСnH2n + Н2 + СО + Н2S + О2 + N2 + CО2 = 100%, (3-5) где SСnH2n+2 – предельные углеводороды; SСnH2n – непредельные угловодороды; Н2S – сернистый водород. СО – окись углерода; CО2 - углекислый газ

Основы теории горения. Одной из основных характеристик любого вида топлива является теплота сгорания, т.е. то количество теплоты, которое может быть получено при полном сгорании единицы массы или объема топлива. Полным сгоранием называется такое, при котором горючие компоненты топлива С, Н и S полностью окисляются кислородом. Теплоту сгорания твердого и жидкого топлива относят к 1 кг, а газового – к 1 м3 при нормальных условиях.
Различают низшую и высшую теплоту сгорания. В высшую теплоту сгорания входит количество теплоты, которое может быть выделено при конденсации водяных паров, находящихся в продуктах сгорания топлива.
Для сравнения различных видов топлива по их тепловому эффекту вводят понятие условного топлива, теплота сгорания которого принята равной 29300 кДж/кг.
Отношение Qpн (низшей рабочей теплоты сгорания) данного топлива к Qу.т. (теплота сгорания условного топлива) называется топливным эквивалентом – Э. Тогда для расчета расхода натурального топлива В н в условное Ву.т., достаточно величину Вн умножить на эквивалент Э, т.е.: Ву.т. = Вн•Э = Вн (Qpн / Qу.т.) (3-6) Горение топлива. Коэффициент избытка воздуха. Горениетоплива – химическая реакция соединения горючих элементов топлива с окислителем при высокой температуре, сопровождающийся интенсивным выделением теплоты. В качестве окислителя используют кислород воздуха.

**Дополнительный материал для самостоятельного изучения. **

Процессы горения разделяют на 2 группы: 1) гомогенное горение – горение газообразных горючих (характеризуется системой "газ+газ");
2) гетерогенное горение – горение твердых и жидких горючих (характеризуется системой "твердое тело+газ" или "жидкость+газ").
Процесс горения может протекать с разной скоростью – от медленного до мгновенного. Медленное горение – самовозгорание твердого топлива при его хранении на складах. Мгновенное горение представляет собой взрыв. В теплоэнергетических установках практическое значение имеет такая скорость реакции, при которой происходит устойчивое горение, т.е. при постоянной подаче в зону горения топлива и окислителя. При этом соотношение концентрации топлива и окислителя должен быть определенным. При нарушении этого соотношения (богатая смесь, бедная смесь) скорость реакции снижается и уменьшается тепловыделение на единицу объема.
Горение – это в основном химический процесс, т.к. в результате его протекания происходит качественные изменения состава реагирующих масс. Но в то же время химическая реакция горения сопровождается различными физическими явлениями: перенос теплоты, диффузионный перенос реагирующих масс и др.
Время горения топлива складывается из времени протекания физических (iфиз) и химических процессов (iхим): iгор = iфиз + iхим. (3-7) Время протекания физических процессов состоит из времени, необходимого для смешивания топлива с окислителем (iсм) и времени, в течении которого топливо – воздушная смесь подогревается до температуры воспламенения (tв): iфиз = iсм + iв. (3-8) Время горения (iгор) определяется скоростью наиболее медленнего процесса.
Горение газообразного топлива. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т.д.
Горючий газ в смеси с окислителем сгорает в факеле. Различают два метода сжигания газа в факеле – кинетический и диффузионный. При кинетическом сжигании до начала горения газ предварительно смешивается с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. При этом скорость горения не должна превышать скорости химических реакций горения iгор = iхим.
Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса будет ограничена скоростью смешивания газа с воздухом iгор = iфиз.
Кроме этого существует смешанное (диффузионно-кинетическое) горение. При этом газ предварительно смешивается с некоторым количеством воздуха, затем полученная смесь поступает в рабочий объем, где отдельно подается остальная часть воздуха.
В топках котельных агрегатов в основном используют кинетический и смешанный способы сжигания топлива.
Горение твердого топлива. Процесс горения состоит из следующих стадий: 1) подсушка топлива и нагревание до температуры начала выхода летучих веществ; 2) воспламенение летучих веществ и их выгорание; 3) нагревание кокса до воспламенения; 4) выгорание горючих веществ из кокса. Эти стадии иногда частично накладываются одна на другую.
Выход летучих веществ у различных топлив начинается при различных температурах: у торфа при 550-660 0К, у бурых углей при 690-710 0К, у тощих углей и антрацита при 1050-1070 0К.
Горение жидкого топлива. Основным жидким топливом, используемым в теплоэнергетике и промышленной теплотехнике является мазут. В установках небольшой мощности также используют смесь технического керосина со смолами.
Наибольшее применение получил метод сжигания в распыленном состоянии. Этот метод позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.
Процесс горения жидкого топлива можно разделить на следующие стадии: 1) нагревание и испарение топлива; 2) образование горючей смеси; 3) воспламенение горючей смеси от постороннего источника (искры, раскаленной спирали и т.п.); 4) собственно горение смеси. Определение теоретического и действительного расхода воздуха на горение топлива Горючие вещества топлива взаимодействуют с кислородом воздуха в определенном количественном соотношении. Расход кислорода и количество получающихся продуктов сгорания рассчитывают по уравнениям горения, которые записывают для 1 кмоля каждой горючей составляющей.
Химические реакции горения горючих составляющих твердого и жидкого топлива имеют вид (цифры приведены для ознакомления): углерода С + О2 = СО2: 12кг С + 32кг О2 = 44кг СО2; 1кг С + (32/12)кг О2 = (44/12)кг СО2; (3-9) водорода2 + О2 = 2Н2О: 4кг Н2 + 32кг О2 = 36кг Н2О; 1кг Н2 + 8кг О2 = 9кг Н2О. (3-10) серы S + O2 = SO2: 32кг S + 32кг O2 = 64кг SO2;1кг S + 1кг O2 = 2кг SO2; (3-11). Для горения 1 кг углерода, водорода и серы необходимо соответственно 8/3, 8 и 1 кг кислорода. В топливе находится Ср/100 кг углерода, Нр/100 кг водорода, Sлр/100 кг летучей серы и Ор/100 кг кислорода. Тогда для горения 1 кг топлива суммарный расход кислорода будет равен: МоО2 = (8/3Ср + 8Нр + Sлр - Ор) / 100. (3-12) Так как массовая доля кислорода в воздухе равна 0,232, то массовое количество воздуха αопределяется по формуле: Мо = [(8/3Ср + 8Нр + Sлр - Ор) / 100] · [100/23,2].
Мо = 0,115 Ср + 0,345 Нр + 0,043(Sлр - Ор). (3-13) При нормальных условиях плотность воздуха rо= 1, 293кг/м3. Тогда объемное количество воздуха, необходимого для горения 1кг топлива можно рассчитать по следующей формуле: Vо = Моо= Мо / 1,293 м3 /кг.
Vо = 0,0889 (Ср + 0,3755Sлр ) + 0,265 Нр – 0,033Ор. (3-14) Для газообразного топлива расход необходимого воздуха Vо определяют из объемных долей горючих компонентов газа с использованием реакций: Н2 + 0,5 О2 = Н2О; СО + 0,5 О2 = СО2 ; Н4 + 2 О2 = СО2 + 2Н2О; Н2S+ 1,5О2 = SО2 + Н2О. Теоретическое количество воздуха, необходимого для сжигания газа, определяют по формуле: Vо = 0,0476 [0,5СО + 0,5Н2 + 2СН4 + 1,5Н2S + S(m + n/4)CmHn - O2]. (3-15) Количество воздуха Vо, рассчитываемого по формулам (3-14) и (3-15), называется теоретически необходимым. То есть Vо представляет собой минимальное количество воздуха, необходимое для обеспечения полного сгорания 1 кг (1м3) топлива при условии, что при горении используется весь содержащийся в топливе и подаваемый вместе с воздухом кислород.
** **

В реальных условиях из-за технических трудностей ощущается местный недостаток или избыток окислителя (воздуха), в результате ухудшается полное горение топлива. Поэтому воздух подается в большем количестве по сравнению с его теоретическим количеством Vо. Отношение действительного количества воздуха (Vд), подаваемого в топку, к теоретически необходимому количеству называется коэффициентом избытка воздуха: a = Vд / Vо . (3-16) При α >1 смесь называется обеднённой (используется в дизельных двигателях), при α < 1 смесь называют обогащённой (частично образуется при сгорании топлива в карбюраторных двигателях, например при езде на малых скоростях). Она сгорает с образованием неполных окислов углерода (СО), азота (NO) и т.п. Эти газы токсичны и опасны для здоровья.

**Дополнительный материал для самостоятельного изучения. **

§ 3.2. Моторные топлива для поршневых ДВС. Нефть и нефтепродукты Основными моторными топливами являются бензины и дизельные топлива, получаемые путем переработки нефти. Кроме этого также используют сжатые и сжиженныегазы; синтетическиетоплива, получаемые переработкой угля, сланцев, битумонозных песков; спирты; эфиры.
Автомобильные бензины представляют собой смеси углеводородов, выкипающих в диапазоне температур 35…205С и вырабатываются следующих марок: по ГОСТу 2084- 77 А-76, АИ-93 (А-92), АИ-95, а также неэтилированный АИ-91; экспортные бензины А-80, А-92, А-96, с улучшенными экологическими свойствами – НОРСИ АИ-80, НОРСИ АИ-92, НОРСИ АИ-95 (НОРСИ - Н ижегодоский ОР г СИ нтез-Акционерное общество, занимающееся переработкой нефти). Цифры в марке бензина показывает октановое число (ОЧ), которое характеризует детонационнуюстойкость бензина. ОКТАНОВОЕ ЧИСЛО, показатель, характеризующий детонационную. стойкость топлив для карбюраторных двигателей внутреннего сгорания. Численно равно содержанию (в % по объему) изооктана в его смеси с н-гептаном, при котором эта смесь эквивалентна по детонациионной стойкости исследуемому топливу в стандартных условиях испытаний. Изооктан трудно окисляется даже при высоких степенях сжатия, и его детонационная стойкость условно принята за 100 единиц. Сгорание в двигателе н-гептана даже при невысоких степенях сжатия сопровождается детонацией, поэтому его детонационная стойкость принята за 0. Для оценки О. ч. выше 100 создана условная шкала, в которой используют изооктан с добавлением различного количества тетраэтилсвинца. Детонационные испытания проводят на полноразмерном автомобильном двигателе или на специальной установках с одноцилиндровыми двигателями. На полноразмерных двигателях в стендовых условиях определяют так называемое фактическое октановое число (ФОЧ), в дорожных условиях – дорожное октановое число (ДОЧ). На специальных установках с одноцилиндровым двигателем определение О. ч. принято проводить в двух режимах: более жестком (моторный метод) и менее жестком (исследовательский метод). О. ч. топлива, установленное исследовательским методом, как правило, несколько выше, чем О. ч., установленное моторным методом. Разность между этими О. ч. характеризует чувствительность топлива к режиму работы двигателя. Важное значение имеют экологические характеристики топлив и продуктов их сгорания. Ежегодные выбросы в атмосферу продуктов сгорания топлив достигают громадных количеств. При этом более 50% выбросов СО, оксидов азота и углеводородов-результат использования моторных топлив. Токсичность отработавших газов, как правило, уменьшается при применении альтернативных топлив.

В настоящее время около 99% мировой потребности в моторных топлив обеспечивается за счет переработки нефти. К началу 21 в. использование альтернативных моторных топлив достигло 5-7% от их общего производства; наиболее перспективны природные и сжиженный нефтяной (попутный) газы, метанол, метил-трет-бутиловый эфир, синтетические топлива из угля и тяжелых нефтей. Используются и разрабатываются также различные методы улавливания вредных веществ из продуктов сгорания. Химический состав нефти представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть-жидкие углеводороды (> 500 или обычно 80-90% по массе) и гетеро-атомные органические соединения (4-5%), преимущественно сернистые (около 250), азотистые (> 30) и кислородные (ок. 85), а также металло-органи-ческие соединения (в основном ванадиевые и никелевые); остальные компоненты-растворенные углеводородные газы (С14, от десятых долей до 4%), вода (от следов до 10%), минеральные соли (главным образом хлориды, 0,1-4000 мг/л и более), растворы солей органических кислот и др., механические примеси (частицы глины, песка, известняка). Элементный состав (%): С-(82-87), H-(11-14,5), S-(0,01-6) (редко до 8), N-(0,001-1,8), О-(0,005-0,35) (редко до 1,2) и др. Всего в нефти обнаружено более 50 элементов. Подготовка и переработка. Перед поступлением сырой нефти с нефтепромыслов на НПЗ от нее отделяют пластовую воду и минеральные соли. Кроме того, для снижения потерь ценных углеводородов при транспортировании и хранении, а также обеспечения постоянного давления паров нефти при подаче на НПЗ ее подвергают стабилизации, т.е. отгоняют пропан-бутановую, а иногда частично и пентановую фракцию углеводородов/ Первичная переработка нефти состоит в ее перегонке, в результате которой, в зависимости от профиля предприятия, отбирают так называемые светлые (бензины, керосины и дизельные топлива) и темные (мазут, гудрон) нефтепродукты. Для увеличения выходов и повышения качества светлых нефтепродуктов, а также получения нефтехимического сырья, нефть направляют на вторичную переработку, связанную с изменением структуры входящих в ее состав углеводородов. Удаление нежелательных компонентов (сернистых, смолистых и кислородсодержащих соединения), металлов, а также некоторых ароматических углеводородов) достигается очисткой нефтепродуктов Для дальнейшего повышения качества полученных нефтепродуктов к ним добавляют специальные вещества (присадки). Дизельные топлива вырабатываются в основном из гидроочищенных фракций прямой перегонки нефти. В Росии вырабатывают три сорта дизельного топлива:
"л" (летнее) – для эксплуатации при температуре 0 0С и выше;
"з" (зимнее) - для эксплуатации при температуре(-20 0С) и выше;
"а" (арктическое) - для эксплуатации при температуре(-50 0С) и выше.
Углеводородные газообразные топлива при нормальных условиях подразделяют на сжатые (СПГ) и с жиженные (СНГ). В качестве сжатого газа используют природный газ (95% метана СН4). Сжиженные газы являются продуктами переработки попутных газов и газов газоконденсатных месторождений и в основном содержат бутанпропановые и бутиленпропиленовые смеси, находящиеся при нормальной температуре в жидком состоянии.
Основным преимуществом газовых топлив является их чистота, более легкий запуск в холодное время, высокие экологические качества.

** **

Термический крекинг
Расщепление молекул углеводородов протекает при более высокой температуре (4700-5500 С). Процесс протекает медленно, образуются углеводороды с неразветвленной цепью атомов углерода. В бензине, полученном в результате термического крекинга, наряду с предельными углеводородами, содержится много непредельных углеводородов. Поэтому этот бензин обладает большей детонационной стойкостью, чем бензин прямой перегонки.
В бензине термического крекинга содержится много непредельных углеводородов, которые легко окисляются и полимеризуются. Поэтому этот бензин менее устойчив при хранении. При его сгорании могут засориться различные части двигателя. Для устранения этого вредного действия к такому бензину добавляют окислители. Каталитический крекинг
Расщепление молекул углеводородов протекает в присутствии катализаторов и при более низкой температуре (4500-500 0С).

Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина. По сравнению с термическим крекингом процесс протекает значительно быстрее, при этом происходит не только расщепление молекул углеводородов, но и их изомеризация, т.е. образуются углеводороды с разветвленной цепью атомов углеродов.
Бензин каталитического крекинга по сравнению с бензином термического крекинга обладает еще большей детонационной стойкостью, ибо в нем содержатся углеводороды с разветвленной цепью углеродных атомов.
В бензине каталитического крекинга непредельных углеводородов содержится меньше, и поэтому процессы окисления и полимеризации в нем не протекают. Такой бензин более устойчив при хранении. Топливная промышленность занимает примерно 20% в отраслевой структуре промышленности России.

§ 3.3. Двигатели внутреннего сгорания Дви́гатель вну́треннего сгора́ния ( ДВС ) — это тип двигателя, тепловая машина в которой химическая энергия топлива(обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются весьма несовершенным типом тепловых машин (низкий КПД, сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы)

Первые ДВС- гиперссылка

Рис.3.1.Схема работы четырехтактного двигателя, цикл Отто.
1. Впуск, 2. Сжатие, 3. Рабочий цикл (ход), 4. Выпуск.

См. презентацию- гиперссылка

ДВС очень широко распространены, например на транспорте.

Устройство и принцип действия ДВС см.видео1 - гиперссылка - видео2 Основными типами ДВС являются: Рис.3.2. Роторно-поршневой двигатель. поршневые двигатели — камерой сгорания является цилиндр, где тепловая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма. По типу используемого топлива делятся на: б ензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), или непосредственно в цилиндре при помощи распыляющих форсунок, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи; д изельные —специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Возгорание смеси происходит под действием высокого давления и, как следствие, температуры в камере; газовый двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях: смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испаренная в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи. сжатые природные газы — хранятся в баллоне под давлением 150—200 ат. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя; генераторный газ — газ, полученный превращением твердого топлива в газообразное. В качестве твердого топлива используются: уголь, торф, древесина газодизельные — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю. Роторно-поршневые — за счет вращения в камере сгорания многогранного ротора динамически формируются объёмы, в которых происходит обычный цикл ДВС. Газотурбинные двигатели — энергия расширяющихся продуктов горения передаётся на лопатки газовой тур бины. Недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартер. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Также ДВС нужны топливная система для подачи топливной смеси и выхлопная система отвода газов). Идеальные циклы ДВС, термические КПД циклов. Циклы поршневых двигателей внутреннего сгорания подразделяют на три группы: а) с подводом теплоты при постоянном объеме (карбюраторные ДВС); б) с подводом теплоты при постоянном давлении (компрессорные дизели); в) со смешанным подводом теплоты при постоянном объеме (бескомпрессорные дизели). Основными характеристиками или параметрами любого цикла теплового двигателя являются следующие безрамерные величины:
степень сжатия (отношение удельных объемов рабочего тела в начале и конце сжатия) e = n1 / n2, (3-17) степень повышения давления (отношение давлений в конце и в начале изохорного процесса подвода теплоты) l = Р3 / Р2, (3-18) степень предварительного расширения или степень изобарного расширения (отношение удельных объемов в конце и в начале изохорного процесса подвода теплоты) r = n3 / n2. (3-19)

1) Рассмотрим цикл ДВС с подводом теплоты при постоянном объеме на примере четырехтактного двигателя.
Диаграмма двигателя представлена на рис.3.3

а-1 (1-ый такт) – в цилиндр через всасывающий клапан поступает смесь воздуха и паров горючего (нетермодинамичемкий процесс);
1-2 (2-ой такт) – адиабатное сжатие (повышается температура);

Рис.3.3.

2-3 – сгорание горючей смеси, давление быстро возрастает при постоянном объеме (подвод теплоты q1);
3-4 (3-ий такт) – адиабатное расширение (рабочий процесс, совершается полезная работа);

4-1 – открывается выхлопной клапан и отработанные газы покидают цилиндр, давление в цилиндре падает (отводится тепло q2).
1-а (4-ый такт) – выталкивание оставшихся в цилиндре газов.
Затем процесс повторяется. В цикл 1-2-3-4-1 процессы всасывания и выпуска не входят.
Описанный круговой процесс является необратимым (наличие трения, химической реакции в рабочем теле, конечные скорости поршня,теплообмен при конечной разности температур и т.п.).
Для анализа теории тепловых машин термодинамика рассматривает идеальные обратимые циклы. Диаграмма идеального кругового процесса двигателя внутреннего сгорания показана на рис.3.4. Из этой диаграммы выводится формула для термического к.п.д. цикла с подводом теплоты при постоянном объеме, которая имеет следующий вид: ht = l i/ q 1 = (q 1 - q 2)/ q 1 = 1 – 1/eγ-1, (3-20) где: e –степень сжатия (основной показатель работы двигателя, чем выше ε, тем выше экономичность ДВС ); γ – показатель адиабаты. e = n1 / n2; γ = 1,4 для идеального газа

Рис.3.4. Идеальный цикл карбюратоного ДВС.

. 2). Идеальный цикл ДВС со смешанным подводом теплоты при постоянном объеме (бескомпрессорные дизели). Диаграмма цикла показана на рис.3.5.

1-2 - чистый воздух с температурой Т1 сжимается до температуры Т2, которая больше температуры воспламенения воздуха. В этот момент в цилиндр через форсунки под давлением впрыскивается топливо.
2-3 – горючая смесь самовоспламеняется и к рабочему телу подводится тепло q1*, давление повышается до Р3.

Рис.3.5. Цикл ДВС со смешанным подводом теплоты

3-4 – поршень перемешается обратно, поступление и сгорание топлива продолжается при постоянном давлении и подводится тепло q1**.
4-5 – поршень продолжает перемещаться в нижнюю мертвую точку, давление падает (адиабатное расширение);
5-1 – процесс отвода теплоты q2 при постоянном объеме (через выпускной клапан покидают отработанные газы). Термический к.п.д. цикла определяется по формуле:

ht = 1 – (l·rγ – 1) / eg-1·[(l - 1) + g·l·(r – 1)] (3-21)

Цикл двигателей с подводом теплоты при постоянном давлении (компрессорный дизель) широкого применения не нашёл. Индикаторная диаграмма. Индикаторный и эффективный КПД ДВС. Индикаторная диаграмма - (гиперссылка) графическое изображение изменения давления газа или пара в цилиндре поршневой машины в зависимости от положения поршня. Индикаторная диаграмма вычерчивается обычно с помощью индикатора давления. Индикатор давления - прибор для измерения и регистрации изменений давления в устройствах пневмоавтоматики, цилиндрах поршневых машин и т. д. Индикатор давления обычно имеет воспринимающую часть (датчик), передающее и регистрирующее устройства. В пневматическом и ндикаторе давления давление на поршень или мембрану (воспринимающая часть) через шток передаётся на рычаг самописца, фиксирующего изменения положения поршня (мембраны), т. е. изменения давления. В электрическом индикаторе давления колебания давления преобразуются датчиком в электрические сигналы, которые регистрируются с помощью осциллографа, электрических измерительных приборов и др. По оси абсцисс откладывается объём, занимаемый газами в цилиндре, а по оси ординат — давление. Каждая точка на и ндикаторной диаграмме (рис 3.6) показывает давление в цилиндре двигателя при данном объёме, т. е. при данном положении поршня (точка r соответствует началу впуска; точка а — началу сжатия; точка с — концу сжатия; точка z — началу расширения; точка b — концу расширения

Рис. 3.6. Индикаторная диаграмма ДВС

Индикаторная диаграмма даёт представление о значении работы, производимой двигателем внутреннего сгорания или насосом, и об их мощности. Рабочее тело совершает полезную работу только в течение рабочего хода. Поэтому для определения полезной работы необходимо из площади, ограниченной кривой расширения Z b, вычесть площадь, ограниченную кривой сжатия a c. Различают теоретическую и действительную индикаторную диаграмму Теоретическая строится по данным теплового расчёта и характеризует теоретический цикл; действительная и ндикаторная диаграмма снимается с работающей машины при помощи индикатора и характеризует действительный цикл.
Для удобства ведения расчётов и сопоставления между собой разных двигателей переменные по ходу поршня давления заменяются условным постоянным давлением, при котором за один ход поршня получается работа, равная работе газов за цикл с переменным давлением. Это постоянное давление называется средним индикаторным давлением и представляет собой работу газов, отнесённую к рабочему объёму поршневой машины.

   

Под средним индикаторным давлением Pi понимают такое условное постоянное давление, которое действуя на поршень в течение одного рабочего хода, совершает работу, равную индикаторной работе газов в цилиндре за рабочий цикл. Согласно определению, среднее индикаторное давление - отношение индикаторной работы газов за цикл Li к единице рабочего объема цилиндра Vц, т.е. Pi=Li/Vц. (3-22) При наличии индикаторной диаграммы, снятой с двигателя (рис. 3.6), среднее индикаторное давление можно определить по высоте прямоугольника, построенного на основании Vц, площадь которого равна полезной площади индикаторной диаграммы, представляющей собой в некотором масштабе индикаторную работу Li. Определив с помощью планиметра полезную площадь F индикаторной диаграммы (м2) и длину R индикаторной диаграммы (м), соответствующую рабочему объему цилиндра, находят значение среднего индикаторного давления Pi=F•m/R, где m - масштаб давления индикаторной диаграммы, Па/м. Средние индикаторные давления при номинальной нагрузке у четырехтактных карбюраторных двигателей 0.8 - 1.2 МПа, у четырехтактных дизелей 0.7 - 1.1 МПа, у двухтактных дизелей 0.6 - 0.9 МПа. Индикаторной мощностью Ni называют работу, совершаемую газами в цилиндрах двигателя в единицу времени. Индикаторная работа (Дж), совершаемая газами в одном цилиндре за один рабочий цикл, Li=Pi ·Vц. Так как число рабочих циклов, совершаемых двигателем в секунду, равно 2n/T, то индикаторная мощность (кВт) одного цилиндра Ni= (2/T) · Li ·n ·10-3 (кВт) = (2/T) ·Pi ·Vц ·n ·10-3 (кВт), (3-23) где n частота вращения коленчатого вала, 1/с, T - тактность двигателя - число тактов за цикл (T=4 для четырехтактных двигателей и T=2 для двухтактных). Работа за цикл определяется в джоулях. Индикаторная мощность многоцилиндрового двигателя при числе цилиндров z: Ni = (2/T) ·Pi ·Vц ·n ·z ·10-3 (кВт), (3-24) Примечание:Если в расчётах работу определять в килоджоулях (кДж), то множитель 10-3 в формулах (3-23) и (3-24) надо опустить. Эффективной мощностью Ne называют мощность, снимаемую с коленчатого вала двигателя для получения полезной работы. Эффективная мощность меньше индикаторной Ni на величину мощности механических потерь Nм, т.е. Ne=Ni - Nм. (3-25) Мощность механических потерь затрачивается на трение при приведении в действие кривошипно-шатунного механизма, механизма газораспределения, вентилятора, жидкостного, масляного и топливного насосов, генератора тока и других вспомогательных механизмов и приборов. Механические потери в двигателе оцениваются механическим КПД ηм, которое представляет собой отношение эффективной мощности к индикаторной, т.е. ηм = Ne/Ni= (Ni-Nм) /Ni = 1- (Nм/Ni). (3-26) Для современных двигателей механический КПД составляет 0.72 - 0.9. Зная величину механического КПД можно определить эффективную мощность Ne = ηм ·Ni. (3-27) Аналогично индикаторной мощности определяют мощность механических потерь Nм= (2/T)·Pм ·Vц·n·z·10-3, (3-28) где Pm - среднее давление механических потерь, т.е. часть среднего индикаторного давления, которая расходуется на преодоление трения и на привод вспомогательных механизмов и приборов. Согласно экспериментальным данным для дизелей Pм=1.13+0.1·Uсp; (3-29) для карбюраторных двигателей Pм= 0.35+0.12· Uсp; где Uсp - средняя скорость поршня, м/с. Разность между средним индикаторным давлением Pi и средним давлением механических потерь Pм называют средним эффективным давлением Pe, т.е. Pe=Pi-Pм. Эффективная мощность двигателя Ne= (2/T)·Pe·Vц·n·z·10-3 (кВт), (3-30) откуда среднее эффективное давление Pe=103·Ne·T/(2·Vц·n·z). (3-31) Среднее эффективное давление при нормальной нагрузке у четырехтактных карбюраторных двигателе 0.75 - 0.95 МПа, у четырехтактных дизелей 0.6 - 0.8 МПа, у двухтактных 0.5 - 0.75 МПа. Индикаторный КПД оценивает степень использования теплоты в действительном цикле с учетом всех тепловых потерь и представляет собой отношение теплоты Qi, эквивалентной полезной индикаторной работе, ко всей затраченной теплоте Q (затраченной работе), т.е. ηi=Qi/Q. Теплота Qi (кВт) эквивалентна индикаторной работе за время τ = 1с (индикаторной мощности), Qi/τ =Ni. Теплота Q (кВт), затраченная на работу двигателя в течение (затраченная мощность) Q=В• (Qpн), где В - расход топлива, кг /с; Qp н - низшая рабочая теплота сгорания топлива, кДж/кг. Подставляя значение Qi и Q в равенство (а), получим: ηi = Ni/В•(Qpн). (3-32) Удельный индикаторный расход топлива [ кг /кВт•ч ] представляет собой отношение секундного расхода топлива В к индикаторной мощности Ni, т.е. bi=(B/Ni) •3600 [ кг /(кВт•ч) ], или bi=(B/Ni) •3.6•106, [ г /(кВт•ч) ] (3-33). У карбюраторных двигателей индикаторный КПД составляет 0,28-0,35, у дизельных 0,38-0,48, у газовых 0,28-0,33. Удельный индикаторный расход топлива равен: для карбюраторных двигателей 0,245-0,30 кг/кВт• ч, для дизеля 0,165-0,21 кг/кВт• ч. Экономичность работы двигателя в целом определяют эффективным КПД ηе и удельным эффективным расходом топлива be. Эффективный КПД оценивает степень использования теплоты топлива с учетом всех видов потерь, как тепловых так и механических и представляет собой отношение теплоты Qe, эквивалентной полезной эффективной работе, ко всей затраченной теплоте B•Q, т.е. ηе=Qe/(B• (Qpн) =Ne/(B• (Qpн) (3-34). Так как механический КПД равен отношению Ne / Ni, то, подставляя в уравнение, определяющее механический КПД, значения Ne и Ni из уравнений (3-32) и (3-34), получим ηм=Ne/Ni=ηei, откуда ηei ηм, т.е. эффективный КПД двигателя равен произведению индикаторного КПД на механический. Удельный эффективный расход топлива [ к г/(кВт•ч) ] представляет собой отношение секундного расхода топлива B к эффективной мощности Ne, т.е. b e=(B/Ne) •3600, или be=(B/Ne) •3.6106 [ г /(кВт•ч) ] (3-35). Для поршневых карбюраторных двигателей эффективный КПД составляет 0,25-0,29, для быстроходных дизелей 0,30-0,40, для газовых двигателей 0,23-0,28. Значения удельного эффективного расхода топлива составляют: для карбюраторных двигателей (0,22-0,48) кг /кВт •ч., для дизелей (0,210-0,285) кг /кВт• ч. Тепловой баланс ДВС. Из анализа рабочего цикла двигателя следует, что только часть теплоты, выделяющейся при сгорании топлива, используется на полезную работу, остальная же часть составляет тепловые потери. Распределение теплоты, полученной при сгорании вводимого в цилиндр топлива, называют тепловым балансом, который обычно определяется экспериментальным путем. Уравнение теплового баланса имеет вид Q=Qe+Qг+Qн.с+Qост, (3-36) где Q - теплота топлива, введенная в двигатель, Qe теплота, превращенная в полезную работу; Qохл - теплота, потерянная охлаждающим агентом (водой или воздухом); Qг - теплота, потерянная с отработавшими газами; Qн.с. теплота, потерянная вследствие неполного сгорания топлива, Qост остаточный член баланса, который равен сумме всех неучтенных потерь. Количество располагаемой (введенной) теплоты (кВт) Q=BQpн. Теплота (кВт), превращенная в полезную работу за ед.времени, Qe=Ne. Теплота (кВт), потерянная с охлаждающей водой, Qохл=Bв•Cв• (t2-t1), где Bв количество воды, проходящей через систему, кг/с; Cв - теплоемкость воды, кДж/(кг•0К) [Cв=4.19 кДж/(кг•0К) ]; t2 и t1 - температуры воды при входе в систему и при выходе из нее, 0С. Теплота (кВт), теряемая с отработавшими газами, Qг=B•(Vг•Cрг•tг-Vв•Cрв•tв), где B расход топлива, кг/с; Vг и Vв расходы газов и воздуха, м3/кг; Cрг и Cрв средние объемные теплоемкости газов и воздуха при постоянном давлении, кДж/(м3•К); tг и tв - температура отработавших газов и воздуха, в 0С. Теплота, теряемая вследствие неполноты сгорания топлива, определяется опытным путем. Остаточный член теплового баланса (кВт) Qост=Q-(Qe+Qохл+Qг+Qн.с). Тепловой баланс можно составить в процентах от всего количества введенной теплоты, тогда уравнение баланса примет вид 100%=qe+qохл+qг+qн.с+qост, где qе=(Qe/Q•100%); qохл=(Qохл/Q) •100%; qг=(Qг/Q) •100% и т.д. В табл. 1 приведены примерные значения отдельных составляющих теплового баланса автотракторных двигателей. Табл.1.

Тракторные ДВС- гиперссылка

3. 4. Паровые двигатели. Паротурбинные установки.

Паровые двигатели получили широкое распространение в конце 18-го и особенно в 19 веке нашей эры. паровые двигатели.docПервые паровые двигатели- гиперссылка.

См. презентацию- гиперссылка.- Термодинамический цикл ПТУ. Паротурбинная установка является основой современных тепловых и атомных электростанций. Рабочим телом в таких установках является пар какой-либо жидкости (водяной пар). Основным циклом в паротурбинной установке является цикл Ренкина.
Принципиальная схема ПТУ показана на рис.3.9. Процесс получения работы происходит в следующим образом. В паровом котле (1) и в перегревателе (2) теплота го

рения топлива передается воде. Полученный пар поступает в турбину (3), где происхо дит преобразование теплоты в механическую работу, а затем в электрическую энергию в электрогенераторе (4). Отработанный пар поступает в конденсатор (5), где отдает теплоту охлаждающей воде. Полученный конденсат насосом (6) отправляется в питательный бак (7), откуда питательным насосом (8) сжимается до давления, равного в котле, и подается через подогреватель (10) в

Рис.3.9. Схема ПТУ.

паровой котел (1). Рассмотрим цикл Ренкина на перегретом паре. На рис.3.10 изображен цикл Ренкина в T-S-диаграмме и P- v диаграмме.
Процессы:

а) в диаграмме T-S
3-1 – подвод теплоты от источника к воде и пару q1 состоит из трёх процессов: 3-3/ - вода нагревается до кипения, 3-4 превращается в пар в котле;полученный сухой парперегревается (4-1) в пароперегревателе (все три процесса изобарные);
1-2 – в турбине пар расширяется адиабатически, без подвода (отвода) теплоты;
2-2´ - пар конденсируется и отдает тепло q2 охлаждающей воде;
2-3 – конденсат изохорно сжимается; так как теплота этого процесса незначительна, процесс можно считать и адиабатным.

Рис. 3.10. Цикл Ренкина на перегретом паре (T-s и P- v диаграммы).

б) В диаграмме P- v: 2-3 изохорное сжатие воды, 3-4, 4-1 изобарный подвод теплоты q1 на нагревание воды до кипения, превращение воды в пар и перегрев пара; 1- 2 -адиабатное расширение пара в турбине; 2 - 2 – изобарное превращение влажного пара в воду (конденсат) с отводом теплоты q2
Термический к.п.д. цикла Ренкина определяется по уравнению: ht = (q1 – q2)/q1 (3-37); так как: q1 = i1 – i3; q2 = i2 – i2 ( i - удельная энтальпия) то ηt = [(i1 – i2) - (i3 – i2)] /(i1 – i3) = l / q1. (3-38) Полезная работа цикла равна разности работ турбины и насоса:
l = l тl н, где: l т = i1 – i2, l н = i3 – i2.
В основном l т >> l н, тогда считая i3 = i2, можно записать: ht = (i1 – i2)/(i1 – i3) = (i1 – i2)/(i1 – i2). (3-39) Теоретическуя мощность турбины рассчитывают по формуле: Nт = l т •М = (i1 – i2)· М, [Вт] (3-40) где М – секундный расход пара, [ кг/ с]

Цикл Ренкина на перегретом паре применяется для увеличения термического к.п.д. цикла ПТУ. Для этого перед турбиной ставят перегреватель 2 (Рис.3.9), который увеличивает температуру и давление пара. При этом возрастает средняя температура подвода теплоты в цикле.

Классификация паровых турбин. Устройство, принцип действия. Паровые турбины имеют ряд преимуществ перед другими типами двигателей: компактность, возможность получения больших мощностей в одном агрегате, непрерывный рабочий процесс и высокая экономичность эксплуатации. Работа паровой турбины основана на истечении водяного пара и использовании его кинетической энергии. Преобразование теплоты пара в механическую работу может осуществляться по активному и реактивному принципу. Турбины, у которых расширение пара происходит только в соплах, а на рабочих лопатках используется кинетическая энергия пара при постоянном давлении, называют активными. Рабочий процесс такой турбины представлен на рис. 3.11. Свежий пар с давлением Р0 и скоростью С0 поступает в сопло 4 и расширяется в нём до давления Р. Скорость пара возрастает до С1. С этой скоростью пар поступает в каналы, образованные рабочими лопатками 3. На рабочих лопатках направление скорости пара меняется, вследствие чего возникают силы давления на лопатки, которые и совершают полезную работу. Отработанный пар уходит из турбины через выпускной патрубок 6. Уплотнение в местах прохода вала 1 через корпус 5 достигается лабиринтным уплотнением 7. Анализ показывает, что кинетическая энергия пара используется полностью, если скорость струи пара на выходе из сопла С1 = 2U, где U = π·d·n. Здесь U – окружная скорость рабочего колеса, d – диаметр рабочего колеса, n – число оборотов рабочего колеса. При высоких давлениях пара скорость истечения его из сопла, а следовательно, и окружные скорости должны быть очень большими, что может привести к разрыву рабочего колеса. Увеличение числа ступеней в турбине до Z уменьшает эти скорости в √Z раз и скорости в каждой ступени получаются небольшими. В реактивных турбинах пар лишь частично расширяется в соплах, а окончательное расширение пара происходит на рабочих лопатках. На рис.3.12, а. показана схема реактивной многоступенчатой турбины. Пар под давлением Р0 через сопло 1 подводится к рабочим лопаткам 2 и 3. В сопле пар частично расширяется, скорость его возрастает до С1. В канале, образованном рабочими лопатками, струя пара меняет своё направление. В результате этого под действием центробежных сил лопатка испытывает суммарное усилие Ракт . Направление силы зависит от формы лопатки. Так как сечение канала между лопатками уменьшается в направлении движения струи, то пар расширяется, давление его падает до конечного для данной ступени значения Р2 ; относительная скорость пара возрастает, а абсолютная уменьшается до С2 вследствие уменьшения кинетической энергии, преобразованной в работу. В результате ускорения струи пара в канале между лопатками возникают реактивные силы, которые дадут равнодействующую Рреакт , направление которой также зависит от формы лопатки. Сложив активную и реактивную силы, получим общую равнодействующую силу Р.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: