double arrow

Самоочищающаяся нанотрава и «эффект лотоса»


Нанотехнологии дают возможность создавать поверхность, похожую на массажную микрощётку. Такую поверхность называют нанотравой, и она представляет собой множество параллельных нанопроволок (наностержней) одинаковой длины, расположенных на равном расстоянии друг от друга (рис. 52).

Рисунок 52. Электронная микрофотография нанотравы, состоящей из кремниевых стержней диаметром 350 нм и высотой 7 мкм, отстоящих друг от друга на расстоянии 1 мкм.

Капля воды, попав на нанотраву, не может проникнуть между нанотравинками, так как этому мешает высокое поверхностное натяжение жидкости. Ведь для того, чтобы проникнуть между нанотравинками, капле надо увеличить её поверхность, а это необходимы дополнительные энергетические затраты. Поэтому капля «парит на пуантах», между которыми находятся пузырьки воздуха. В результате, силы прилипания (адгезии) между каплей и нанотравой становятся очень малы. Это значит, что капле становится невыгодно растекаться и смачивать «колючую» нанотраву, и она сворачивается в шарик, демонстрируя очень высокий краевой угол q, который является количественной мерой смачиваемости (рис. 53).




Рисунок 53. Капля воды на нанотраве.

Чтобы смачиваемость нанотравы сделать ещё меньшим, её поверхность покрывают тонким слоем какого-либо гидрофобного полимера. И тогда не только вода, но и любые частички никогда не прилипнут к нанотраве, т.к. касаются её лишь в нескольких точках. Поэтому и частицы грязи, оказавшиеся на поверхности, покрытой нановорсинками, либо сами сваливаются с неё, либо увлекаются скатывающимися каплями воды.

Самоочищение ворсистой поверхности от частиц грязи называют «эффектом лотоса», т.к. цветы и листья лотоса чисты даже тогда, когда вода вокруг мутная и грязная. Происходит это из-за того, что листья и цветки не смачиваются водой, поэтому капли воды скатываются с них, как шарики ртути, не оставляя следа и смывая всю грязь. Даже каплям клея и мёда не удаётся удержаться на поверхности листьев лотоса.

Оказалось, что вся поверхность листьев лотоса густо покрыта микропупырышками высотой около 10 мкм, а сами пупырышки, в свою очередь, покрыты микроворсинками ещё меньшего размера (рис. 54). Исследования показали, что все эти микропупырышки и ворсинки сделаны из воска, обладающего, как известно, гидрофобными свойствами, делая поверхность листьев лотоса похожей на нанотраву. Именно пупырчатая структура поверхности листьев лотоса значительно уменьшает их смачиваемость. Для сравнения на рис.54 показана относительно гладкая поверхность листа магнолии, который не обладает способностью к самоочищению.

Рисунок 54. Микрофотография поверхности листьев лотоса и магнолии. Внизу слева схематически показан один микропупырышек. Взято из Planta (1997), 202: 1-8.



Таким образом, нанотехнологии позволяют создавать самоочищающиеся покрытия и материалы, обладающие также водоотталкивающими свойствами. Материалы, изготовленные из таких тканей, остаются всегда чистыми. Уже производят самоочищающееся ветровое стекло, внешняя поверхность которого покрыта нановорсинками. На таком стекле «дворникам» делать нечего. Есть в продаже постоянно чистые колесные диски для колёс автомобилей, самоочищающиеся с использованием «эффекта лотоса», и уже сейчас можно покрасить снаружи дом краской, к которой бы грязь не прилипала.







Сейчас читают про: