double arrow

Коллоидно-дисперсные системы


9.1. Общие положения

Системы, в которых одна составная часть распределена в мелкораздробленном состоянии в среде другой, называются дисперсными.

Составная часть, распределённая в виде отдельных мелких твёрдых частиц, капелек жидкости или пузырьков газа, составляет дисперсную фазу,

а другая часть, окружающая частицы дисперсной фазы, называется дисперсионной средой.

Дымы и туманы в воздухе, взвеси глины и песка в воде, коллоидные системы, содержащие частицы, более крупные, чем обычные молекулы, и, наконец, истинные растворы - молекулярные или ионные – всё это различные дисперсные системы.

В зависимости от размера частиц дисперсной фазы системы делятся на

а) грубодисперсные (взвеси) - диаметр частиц больше 10 –5 см;

б) коллоидно-дисперсные (золи) – 10–5 – 10 –7 см;

в) истинные растворы – размер частиц меньше 10–7 см.

Взвеси могут существовать в виде суспензий или эмульсий. В первом случае твёрдое вещество взвешено в жидкости (мел в воде), во втором – жидкое вещество в жидкости (жир в воде).

Частицы грубодисперсных систем различимы визуально и, если они распределены в жидкости или газе, то постепенно оседают или всплывают.




В коллоидных системах дисперсная фаза нерастворима в дисперсионной среде и отделена от неё поверхностью раздела; таким образом, коллоидные системы являются гетерогенными системами в отличие от истинных растворов, которые являются гомогенными, однородными. Если дисперсионная среда – жидкость, а дисперсная фаза – твёрдое вещество, коллоидная система называется золем; если дисперсная фаза – жидкость, система называется эмульсией.

Высокоразвитая поверхность раздела между дисперсной фазой и дисперсионной средой в коллоидных системах создаёт большой избыток поверхностной энергии. Поэтому с увеличением дисперсности (или удельной поверхности) коллоидные системы становятся менее устойчивыми. Они всегда стремятся к самопроизвольному уменьшению межфазной поверхности, т.е. к снижению дисперсности: частицы укрупняются, образуя более крупные агрегаты.

Свойство коллоидных систем увеличивать размер частиц путём их агрегации называется агрегативной неустойчивостью.

Для получения устойчивой коллоидной системы необходимо присутствие в системе стабилизатора. В большинстве случаев стабилизатором является электролит, находящийся в растворе. Один из ионов электролита адсорбируется на поверхности коллоидных частиц, сообщая им одноимённый заряд, препятствующий их агрегатированию (слипанию). Ионы противоположного знака находятся в дисперсионной среде.

9.2. Получение коллоидных систем

Благодаря тому, что коллоидные системы занимают промежуточное положение между грубодисперсными и молекулярно-дисперсными системами, их можно получить принципиально различными методами.



а) дисперсионные методы: дробление более крупных по размеру частиц до коллоидной степени дисперсности механическим измельчением частиц, электрическим диспергированием и ультразвуковым методом;

б) конденсационные методы: укрупнение частиц путём соединения (конденсации) атомов и молекул в агрегаты с коллоидно-дисперсной степенью дисперсности ; к этой группе методов относят получение золей конденсацией паров, заменой растворителя и с помощью различных химических реакций (метод химической конденсации).

Основные условия, необходимые для получения и длительного хранения коллоидных систем, независимо от способов их получения, следующие:

1) нерастворимость частиц дисперсной фазы в дисперсионной среде;

2) достижение коллоидной степени дисперсности (10--5 – 10 --7 см) частицами дисперсной фазы;

3) наличие в системе третьего компонента - стабилизатора, который сообщает системе агрегативную устойчивость.

9.3. Строение мицелл золей

В настоящее время общепринятой теорией строения коллоидных частиц является мицеллярная теория, согласно которой мицелла - это агрегат молекул и ионов, состоящий из ядра и двойного электрического слоя. А двойной электрический слой состоит из адсорбционного слоя родственных ионов и противоионов и диффузного слоя противоионов. Мицелла электронейтральна, т.к. в ней число положительных ионов равно числу отрицательных. В электрическом поле коллоидные частицы перемещаются с постоянной скоростью к одному из электродов , т.к. обладают одноимённым зарядом (либо положительным, либо отрицательным) . Наличие одноимённого заряда у всех частиц данного золя является важным фактором его устойчивости. Заряд препятствует слипанию, укрупнению и выпадению в осадок коллоидного вещества.



Чаще всего причиной возникновения заряда является процесс адсорбции ионов того или иного знака поверхностью частиц. По правилу Пескова-Фаянса: на любой твёрдой поверхности будут адсорбироваться те ионы, которые имеют с этой поверхностью общую родственную атомную группировку и находятся в растворе в избытке.

Пример 1. Примером получения золя методом двойного обмена может служить реакция 2H3AsO3 + 3H2S à As2S3 + 6H2O , в случае, если одно из веществ взято в избытке (оно будет выполнять роль стабилизатора), а другое – в недостатке (что предотвращает рост зародышей коллоидных частиц до крупных размеров). При избытке, например, H2S, идёт реакция

2H3AsO3 + 3H2S à As2S3 + 6H2O

изб ядро

В данных условиях молекулы As2S3, конденсируясь, образуют ядро мицеллы m[As2S3].

Известно, что вещество, которое берётся в избытке, является стабилизатором. В данном случаe им будет H2S , которая диссоциирует по уравнению:

H2S <=> H+ + HS

По правилу Пескова-Фаянса на ядре m[As2S3] будут адсорбироваться ионы nHS(как родственные и находящиеся в растворе в избытке). Эти ионы плотно прилегают к ядру и называются потенциалопределяющими. Они определяют направление движения коллоидной частицы при электролизе.

Далее отрицательно заряженные ионы HS притягивают из раствора часть находящихся в избытке ионов Н+, образующих адсорбционный слой противоионов (n-x)H+.

Ядро m[As2S3], адсорбционный слой ионов nHS и противоионов

(n-х)Н+ образуют гранулу, несущую отрицательный заряд, т.к. ионов nHS- больше, чем (n-х)H+ на число х.

Другая часть противоионов хН+ образуют диффузную часть двойного электрического слоя, окружающего ядро мицеллы.

Схема строения мицеллы золя сульфида мышьяка:

{[mAs2S3] * nHS* (n-x)H+ }x – * xH+

| < ядро >| <адсорбционный >| < диффузный |

| | слой | слой |

|< ---------- гранула -----------> | |

| < -------------- мицелла ----------------------- > |

В электрическом поле гранула, имеющая отрицательный заряд, перемещается к аноду, а противоионы – к катоду.

9.4. Явление коагуляции

Коагуляция - процесс слипания частиц с образованием более крупных агрегатов. Внешне коагуляция проявляется в помутнении золя, в изменении окраски золя, в выпадении твёрдой фазы в осадок или в образовании студнеобразной массы.

Коагуляция происходит вследствие уменьшения электрокинетического

( или потенциала или вследствие потери сольватной оболочки.

Коагуляцию коллоидных растворов можно вызвать нагреванием, замораживанием, интенсивным перемешиванием, прибавлением к золю электролита.

Наиболее изучена коагуляция при добавлении к золю электролитов. Коагуляция электролитами подчиняется правилам Шульце-Гарди, которые можно сформулировать следующим образом:

1) коагуляцию вызывает ион, заряженный противоположно грануле золя;

2) чем больше заряд коагулирующего иона, тем сильнее его коагулирующее действие.

Минимальное количество электролита, прибавляемое к золю, которое может вызвать коагуляцию золя, называют порогом коагуляции С(пор) моль/л.

Примеры решения задач

Пример 2. Определение заряда коллоидных частиц.

Золь иодида серебра AgJ получен при добавлении к 0,02 л 0,01н. раствора KJ 0,028 л 0,005 н. AgNO3. Определите заряд полученного золя и напишите формулу его мицеллы.

Решение:

При смешивании растворов AgNO3 и KJ протекает реакция:

AgNO3 + KJ = AgJ + KNO3

Определяем количества AgNO3 и KJ, участвующих в реакции:

а) n (AgNO3 )= 0,005 . 0,028 = 1,4 . 10-4 (моль);

б) n (KJ) = 0,02 . 0,01 = 2,0 .10-4 (моль).

Расчёт показывает, что в растворе избыток KJ, следовательно, ядром коллоидных частиц золя иодида серебра будут адсорбироваться ионы J и частицы золя приобретают отрицательный заряд. Противоионами являются ионы К+. Формула мицеллы золя иодида серебра при условии избытка KJ имеет вид:

{m[AgJ];

Пример 3. Определение минимального объёма электролита, необходимого для получения золя.

Какой объём 0,002 н. раствора BaCl2 надо прибавить к 0,03 л 0,0006 н.Al2(SO4)3, чтобы получить положительно заряженные частицы золя сульфата бария. Напишите формулу мицеллы золя BaSO4.

Решение:

Образование золя BaSO4 происходит по уравнению:

BaCl2 + Al2(SO4)3 = 3BaSO4 + 2AlCl3

Если вещества участвуют в стехиометрических соотношениях, то для реакции необходимо:

(л) раствора BaCl2

Для получения положительных частиц золя BaSO4 в растворе должен быть избыток хлорида бария по сравнению с сульфатом алюминия. Следовательно, для реакции нужно взять более 0,009 л 0,002 н. раствора BaCl2.

Формула мицеллы золя сульфата бария:

Пример 4. Вычисление порога коагуляции электролита с учётом его концентрации.

В каждую из трёх колб налито по 0,01 л золя хлорида серебра. Для коагуляции этого золя в первую колбу добавлено 0,002 л 1н. NaNO3, во вторую – 0,012 л. 0,01н. Сa(NO3)2; в третью – 0,007 л. 0,001н. Al(NO3)3. Вычислите пороги коагуляции электролитов, определите знак заряда частиц золя.

Решение:

Минимальное количество электролита, прибавляемого к золю, которое может вызвать коагуляцию золя, называется порогом коагуляции Спор (ммоль/л) . Порог коагуляции может быть рассчитан по формуле:

где СЭ - эквивалентная концентрация электролита (моль/л);

VЭл , VЗ - соответственно объёмы электролита и золя, л.

Вычисляем пороги коагуляции добавляемых электролитов:

Добавляемые электролиты – NaNO3 , Ca(NO3)3 и Al(NO3)3 cодержат анион NO3-- и катионы Na+, Ca2+ , Al3+ разной зарядности. Наименьший порог коагуляции у Al(NO3)3, следовательно, частицы золя хлорида серебра заряжены отрицательно.

Пример 5. Расчёт порога коагуляции.

Пусть молярная концентрация исходного электролита будет равна С, объём его, вызвавший коагуляцию, V; тогда число миллимолей электролита:

.

Порог коагуляции относится к одному литру золя, и если для его определения было взято w мл золя, то величина порога коагуляции будет:

(ммоль/л)







Сейчас читают про: