Шунт-диодные барьеры

Принципиальные электрические схемы блоков искрозащиты на стабилитронах. a — схема блока с балластным резистором; b — схема блока с балластным резистором для переменного тока; c — схема блока без балластного резистора; d — схема блока для переменного тока с балластными резисторами и заземленной средней точкой стабилитронов; e — схема блока для переменного тока с балластными резисторами с дублированием стабилитронов и заземленной их средней точкой. 1-2 к искроопасной цепи; 3-4 к искробезопасной цепи[1]

Диоды в диодном барьере безопасности ограничивают напряжение, приложенное к искробезопасной цепи, а неповреждаемый токоограничительный резистор ограничивает ток, который может проходить по цепи. Барьеры безопасности предназначены для применения в качестве средств сопряжения искробезопасных и искроопасных цепей.[2]

В зависимости от уровня искробезопасной цепи ia, ib, ic ветвь цепи, содержащая ограничивающий напряжение диод, должна параллельно троироваться (для ia) или дублироваться (для ib).[3]

Искробезопасные барьеры на шунтирующих диодах (стабилитронах) были разработаны в конце 1950-х для контроллеров управления технологическими процессами в химической промышленности.

Обычно блок искрозащиты на стабилитронах (БИС) выполнен как единый неразборный блок, залитый компаундом или помещённый в неразборную оболочку, что исключает возможность ремонта или замены элементов его внутреннего монтажа.

БИС состоит из шунтирующих стабилитронов и последовательно включённых резисторов или резисторов и предохранителей.

В нормальном режиме работы электрооборудования напряжение пробоя стабилитронов не превышается — стабилитрон не проводит ток. При возникновении аварии во вторичной части системы, расположенной в безопасной зоне, и при превышении внешним напряжением значения напряжения пробоя стабилитрона (рабочей областью стабилитронов является участок на обратной ветви вольт-амперной характеристики) он переходит в режим стабилизации уровня напряжения при изменении величины протекающего через него тока. Стабилитрон начинает проводить ток. Последовательно включённый резистор ограничивает ток в цепи взрывоопасной зоны. При достижении током определённого значения срабатывает встроенный предохранитель, что предотвращает передачу недопустимо большой электрической мощности из безопасной зоны в электрические цепи оборудования, расположенного во взрывоопасной зоне.

Достоинства:

  • простота изделий;
  • универсальность;
  • низкие потери;
  • не требует отдельного источника питания;
  • большая практика эксплуатации во всем мире;
  • высокая плотность монтажа
  • высокая точность и линейность
  • низкая стоимость
  • хороший частотный диапазон (до 100 КГц).

Недостатки:

  • ограниченный диапазон рабочих напряжений;
  • ограниченное напряжение, доступное в опасной зоне;
  • необходимость фундаментального безопасного заземления барьеров;
  • необходимость использования только низковольтного оборудования, обусловленное гальванической связью между опасной и безопасной зонами;
  • оборудование опасной зоны должно быть изолировано от земли;
  • не поддается восстановлению после аварии;
  • уязвимы к молнии и другим импульсным перенапряжениям.

Одним из основных параметров, характеризующим барьеры, является проходное сопротивление. При снижении проходного сопротивления барьера возможно использовать датчики с большим значением минимального напряжения питания и большим сопротивлением. Использование российскими производителями мощных резисторов и мощных стабилитронов позволило снизить проходное сопротивление 24-вольтовых барьеров степени искрозащиты ib до 284 Ом. Дальнейшее уменьшение проходного сопротивления использованием более мощных стабилитронов ограничивается увеличением габаритов барьеров и увеличением их стоимости.[4]


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: