Вопрос 5. Позиционные задачи, это те в которых определяется взаимное положение, например, определить взаимное положение прямой и плоскости

Позиционные задачи, это те в которых определяется взаимное положение, например, определить взаимное положение прямой и плоскости, плоскости и поверхности, двух плоскостей, все это позиционные задачи.

К метрическим относятся задачи, связанные с определением истинных (натуральных) величин расстояний, углов и плоских фигур на комплексном чертеже. Можно выделить три группы метрических задач

1. Группа задач, включающих в себя определение расстояний от точки до другой точки; от точки до прямой; от точки до плоскости; от точки до поверхности; от прямой до другой прямой; от прямой до плоскости; от плоскости до плоскости. Причем расстояние от прямой до плоскости и между плоскостями измеряется в тех случаях, когда они параллельны.

2. Группа задач, включающая определение углов между пересекающимися или скрещивающимися прямыми, между прямой и плоскостью, между плоскостями (имеется в виду определение величины двухгранного угла).

3. Группа задач, связанная с определением истинной величины плоской фигуры и части поверхности (развертки).

Приведенные задачи могут быть решены с применением различных способов преобразования чертежа. В основе решения метрических задач лежит свойство прямоугольного проецирования, заключающееся в том, что любая геометрическая фигура на плоскость проекций проецируется в натуральную величину, если она лежит в плоскости, параллельной этой плоскости проекций. Решение задач значительно упрощается, если хотя бы одна из геометрических фигур, участвующих в задачах, занимает частное положение. Если одна из геометрических фигур не занимает частного положения, необходимо выполнить определенные построения, позволяющие провести одну из них в это положение.

Вопрос 6.

1. Проекция точки есть точка (рис. 1.9).

Рис. 1.9

2. Проекция прямой в общем случае есть прямая (рис. 1.10).

Если прямая располагается перпендикулярно какой-либо плоскости проекций (такая прямая называется проецирующей), то на эту плоскость она проецируется в виде точки (рис. 1.10).

3. Если точка лежит на прямой, то ее проекция располагается на соответствующей проекции этой же прямой А m А m (рис. 1.11).

Рис. 1.10 Рис. 1.11

Примечание. Первые 3 свойства проекций являются общими для центрального и параллельного проецирования.

4. Если точка делит отрезок прямой в каком-либо отношении, то ее проекция делит проекцию отрезка в том же самом отношении (рис. 1.12).

Рис. 1.12

5. Если прямая параллельна плоскости проекций, то на эту плоскость эта прямая проецируется без искажений (рис.1.13).

m II mp = m, m II p [ Аp Вp ] = [ AB ].

Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется без искажения.

6. Если прямые в пространстве пересекаются, то их проекции также пересекаются (рис. 1.14).

m n = C mp пp сp

Рис. 1.13 Рис. 1.14

7. Если прямые в пространстве параллельны, то их проекции также параллельны (рис. 1.15).

a II b аp II b p

Примечание. Общими для косоугольного и прямоугольного проецирования являются свойства 4, 5, 6.

8. Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол проецируется без искажений (рис. 1.16).

ABC = 90°; AB|| p; BC|| p; Аp Вp Сp = 90°;

ABD = 90°; AB|| p; BD p; Аp Вp Dp = 90°.

Рис. 1.15 Рис. 1.16

Примечание. Свойство 8-е только для ортогонального проецирования.

9. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.

преимущества:

а) простоту графических построений для определения ортогональных проекций точек;

б) возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.

Указанные преимущества обеспечили широкое применение ортогонального проецирования в технике, в частности для составления машиностроительных чертежей.

Сущность метода ортогонального проецирования. Его приемущества.

Как уже было сказано выше ортогональное проецирование — это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.

Свойства ортогонального проецирования:

Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.

Теорема.

Если одна из сторон прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в виде прямого угла.

Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.

Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Однако, полученные таким образом проекции на одну плоскость, дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.

Чтобы получить обратимый чертеж, т.е. чертеж, дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды обратимых чертежей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: