Типы датчиков приборов УЗИ

Прибором, посредством которого отраженный узи-сигнал от тела человека поступает в аппарат для дальнейшей обработки и визуализации, является датчик. Области медицинского применения определяются, в основном, типом датчиков, работающих с ультразвуковом аппаратом и наличием различных режимов работы.

Датчик это прибор, который излучает сигнал нужной частоты, амплитуды и формы импульса, а также принимает отраженный от исследуемых тканей сигнал, преобразует в электрическую форму и передает для дальнейшего усиления и обработки.

Существует большое количество датчиков, различающихся по способу сканирования, по области применения, а также датчиков, различающихся по виду используемого в них преобразователя.

По способу сканирования

Из возможных способов получения информации о биологических структурах наибольшее распространение получил способ получения двумерного изображения (В-режим). Для этого режима существуют различные виды реализации сканирования.

- Секторное (механическое) сканирование. В датчиках секторного механического сканирования угловое перемещение УЗ луча происходит за счет качания или вращения вокруг оси УЗ преобразователя, излучающего и принимающего сигналы. Ось ультразвукового луча перемещается по углу так, что изображение имеет вид сектора.

- Линейное электронное сканирование. При этом способе сканирования угловое направление УЗ луча не меняется, луч перемещается параллельно самому себе так, что начало луча двигается вдоль рабочей поверхности датчика по прямой линии. Зона обзора имеет вид прямоугольника.

- Конвексное электронное сканирование. В силу геометрии решетки, отличной от линейной, лучи не параллельны друг другу, а расходятся веером в некотором угловом секторе. Сочетает в себе преимущества линейного и секторного сканирования.

- Микроконвексное электронное сканирование. Данный вид сканирования принципиально аналогичен конвексному. Зона обзора при микроконвексном сканировании имеет такой же вид, как и при секторном механическом сканировании. Иногда этот вид сканирования относят к одному из видов секторного сканирования, отличие заключается только в меньшем радиусе кривизны рабочей поверхности датчика (не более 20-25 мм).

- Фазированное секторное электронное сканирование. Отличие фазированного сканирования от линейного заключается в том, что при каждом зондировании при излучении используются все элементы решетки. Для осуществления такого сканирования генераторы импульсов возбуждения формируют одинаковые по форме импульсы, но со сдвигом по времени.

По областям медицинского применения

В зависимости от того, в какой области будет проводиться исследование, выбирается датчик. Кроме того, на выбор того или иного типа датчика влияет глубина расположения исследуемого органа или тканей и их доступность. Первым шагом в оптимизации изображения является выбор наиболее высокой частоты для желаемой глубины исследования.

1. Универсальные датчики для наружного обследования. Применяются для исследований органов малого таза и абдоминальной области у взрослых и детей. В основном в качестве универсальных используются конвексные датчики с рабочей частотой 3,5 МГц для взрослых; 5 МГц для педиатрии; 2,5 МГц для глубоко расположенных органов. Угловой размер сектора сканирования: 40-90º (реже до115º), длина дуги рабочей поверхности – 36-72 мм.

2. Датчики для поверхностно расположенных органов. Применяются для обследования неглубоко расположенных малых органов и структур – щитовидной железы, периферических сосудов, суставов и т.д. Рабочие частоты – 7,5 МГц, иногда 5 или 10 МГц. Чаще всего используется линейный датчик, 29-50 мм, реже конвексный, микроконвексный или секторный механический с водной насадкой с длиной дуги 25-48 мм.

3. Внутриполостные датчики. Существует большое разнообразие внутриполостных датчиков, которые отличаются между собой по областям медицинского применения.

ü Интраоперационные датчики. Т.к. датчики вводятся в операционное поле, то должны выполняться очень компактными. Как правило, в них применяются линейные преобразователи длиной 38-64 мм. Иногда применяются конвексные преобразователи с большим радиусом кривизны. Рабочая частота 5 или 7,5 МГц.

ü Чреспищеводные датчики. Данный вид датчиков используется для исследования сердца со стороны пищевода. Сконструирован по тому же принципу, что и гибкий эндоскоп, система управления ракурсом наблюдения аналогична. Используется секторное механическое, конвексное или фазированное секторное сканирование с рабочей частотой 5 МГц.

ü Внутрисосудистые датчики. Применяются для инвазивного обследования сосудов. Сканирование – секторное механическое круговое, 360 º. Рабочая частота 10 МГц и более.

ü Трансвагинальные (интравагинальные) датчики. Бывают секторного механического или микроконвексного типа с углом обзора от 90º до 270º. Рабочая частота 5, 6 или 7,5 МГц. Ось сектора обычно расположена под некоторым углом относительно оси датчика. Иногда используются датчики с двумя преобразователями, у которых плоскости сканирования расположены под углом 90º друг к другу. Такие датчики называются биплановыми.

ü Трансректальные датчики. В основном применяются для диагностики простатита. Рабочая частота – 7,5 МГц, реже 4 и 5 МГц. В трансректальных датчиках используется несколько типов сканирования. При секторном механическом сканировании в круговом секторе (360 º) плоскость сканирования перпендикулярна оси датчика. В другом виде датчиков используется линейный ультразвуковой преобразователь с расположением вдоль оси датчика. В третьих применяется конвексный преобразователь с плоскостью обзора, проходящей через ось датчика.

Специфическая особенность этих датчиков – наличие канала подвода воды для заполнения одеваемого на рабочую часть резинового мешочка.

ü Трансуретальные датчики. Датчики малого диаметра, вводимые через уретру в мочевой пузырь, использующие механическое секторное или круговое (360º) сканирование с рабочей частотой 7,5 МГц.

4. Кардиологические датчики. Особенностью обследования сердца является наблюдение через межреберную щель. Для таких исследований применяются секторные датчики механического сканирования (одноэлементные или с кольцевой решеткой) и фазированные электронные. Рабочая частота – 3,5 или 5 МГц. В последнее время в приборах высокого класса с цветовым допплеровским картированием применяются чреспищеводные датчики.

5. Датчики для педиатрии. В педиатрии используются те же датчики, что и для взрослых, но с большей частотой – 5 или 7,5 МГц. Это позволяет получать более высокое качество изображения благодаря малым размерам пациентов. Кроме того, применяются специальные датчики. Например, для обследовании головного мозга новорожденных через родничок используется секторный или микроконвексный датчик с частотой 5 или 6 МГц.

6. Биопсийные датчики. Используются для точного наведения биопсийных или пункционных игл. Для этого специально сконструированы датчики, в которых игла может проходить через отверстие (или щель) в рабочей поверхности (апертуре). Вследствие технологической сложности выполнения данных датчиков (что существенно увеличивает стоимость биопсийного датчика) часто применяются биопсийные адаптеры – приспособления для наведения биопсийных игл. Адаптер съемный, жестко крепится на корпусе обычного датчика.

7. Мультичастотные датчики. Датчики с широкой полосой рабочих частот. Датчик работает на различных переключаемых частотах в зависимости от того, какая глубина интересует исследователя.

8. Допплеровские датчики. Применяются для получения информации о скорости или спектре скоростей кровотока в сосудах. В нашем случае ультразвуковые волны отражаются от частиц крови, и это изменение напрямую зависит от скорости кровотока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: