К этой группе устройств относят диафрагмы и тубусы, ограничивающие размеры рабочего пучка излучения, а также фильтры, отсеивающие рестры, изменяющие качественный состав излучения. В большинстве случаев диафрагмы формируют пирамидальные пучки, которые дают на отстоящей поверхности, перпендикулярной к оси пучка, прямоугольные поля облучения. Диафрагмы позволяют плавно изменять размеры этих полей.
Для поглощения неиспользуемой части пучка излучения диафрагмами и тубусами используют входные экраны поглотители и шторки из тяжелых материалов (например свинца) и его сплавов. При номинальном анодном напряжении излучателя 125 кВ толщина экранов и шторок, согласно ГОСТ 26140-84, должна составлять 2.75 мм.
Устройство для коллимации, как правило, весьма точно сопрягают с корпусом излучателя, для чего узел сопряжения снабжают юстировочным устройством.
Диафрагмы содержат четыре или более подвижные шторки, механизм их попарного согласованного перемещения, фильтры излучения, световой имитатор пучка излучения, корпус и рукоятки перемещения шторок. Известны диафрагмы двух видов: плоские, имеющие две пары шторок, и объемные с числом пар шторок более двух. Взаиморасположение шторок выбирают так, чтобы уменьшить габаритные размеры и уменьшить дою афокального и рассеянного излучения, проходящего через диафрагму. Диафрагмы обоих типов схематически изображены на рис. 1.11. На фокусном расстоянии F при одной и той же величине фокуса b нерезкость H от шторок диафрагмы на краю поля облучения будет тем меньше, чем больше расстояние А:
При А1<A2 H1 = b* (F – A1)/A1 > H2 = b*(F – A2)/A2 (1.8)
поэтому в объемных диафрагмах типа «б» Величина этой нерезкости меньше. Кроме того, уменьшение ширины нижних шторок, по которым определяют величину нерезкости, приводит к уменьшению габаритов корпуса диафрагмы.
Объемные диафрагмы, имеющие пару шторок первичной коллимации, расположенных в непосредственной близости от фокуса рентгеновской трубки (в углублении, образованном выходным окном излучателя), называются глубинными диафрагмами. Глубинные диафрагмы существенно уменьшают афокальное излучение рентгеновских трубок.
Если в качестве приемника изображения используется усилитель рентгеновского изображения (УРИ), для уменьшения облучения пациента желательно иметь в диафрагме дополнительные шторки, формирующие круглое регулируемое поле на приемнике, соответствующее круглому входному полю УРИ. Обычно такие диафрагмы формируют близкое к круглому поле в виде правильного многоугольника с числом сторон не менее 8.
Диафрагмы на снимочных рабочих местах обычно снабжены оптическими имитаторами пучка излучения, состоящими из источника света Л и отражающих зеркал З1 и З2. При правильной юстировки оптического имитатора расхождение между оптическим и рентгеновским полями не превышает 1% от расстояния фокус-объект. Выбор величины поля облучения может производиться либо по оптическому имитатору, либо с помощью имеющихся на диафрагме шкал-номограмм, на которых указываются размеры полей облучения и значения фокусных расстояний. На рабочих местах для просвечивания раствор шторок выбирается по визуально наблюдаемому в процессе просвечивания полю излучения.
Шторки диафрагмы для штативов снимков перемещаются оператором за рукоятки Р снаружи корпуса. При использовании диафрагм в других штативах предусматривается дистанционное перемещение либо тросами в оболочках, либо электромеханически.
Для облегчения работы персонала в диафрагмах с электромеханическим приводом может осуществляться автоматическое открытие шторок в зависимости от выбранного формата снимка и расстояния фокус-объект, для чего на диафрагме имеются датчики этих величин. Применение автоматических диафрагм (другой термин – диафрагмы с формат-автоматикой) существенно облегчает работу персонала и снижает уровень облучения при исследовании. В настоящее время такие диафрагмы применяются как на рабочих местах для просвечивания и снимков, так и (реже) на снимочных рабочих местах.
Устройства для ограничения пучка излучения за объектом выполняются в виде сменных компрессионных тубусов или плоских диафрагм в экрано-снимочном устройстве. Диафрагмирование пучка излучения непосредственно перед пленкой при наличии диафрагмы на излучателе существенно улучшает ограничение поля излучения, так как диафрагма на излучателе создает полутень тем большую, чем больше фокусное расстояние. Компрессионный тубус помимо этого осуществляет компрессию пациента. Размеры плоской диафрагмы или тубуса устанавливаются с помощью механического или электромеханического привода в зависимости от выбранного формата снимка. Благодаря малому расстоянию от пленки такая диафрагма практически не образует полутени и достаточно точно ограничивает размеры снимка.
Фильтры излучения предназначены для полного или частичного поглощения преимущественно длинноволновой части спектра рентгеновского излучения. Применяют алюминиевые, медные, железные, комбинированные фильтры, например, медные на алюминиевой подложке. Работа фильтра поясняется на рис. 1.12, где показано, какую часть спектра излучения поглощают алюминиевые фильтры толщиной 2-5 мм. Фильтры вводят в прямой пучок перпендикулярно центральному лучу до ил после устройства для коллимации. Подобный фильтр по существу является дополнительным собственным фильтрам излучателя и рентгеновской трубки, поэтому его толщину подбирают с учетом собственных фильтров. Плоские фильтры работают равномерно по всему сечению пучка. Клиновидны и фигурные фильтры по-разному поглощают излучение в разных точках сечения пучка, что дает возможность локально изменять интенсивность входного (до объекта) и выходного (после объекта) излучения и компенсировать перепады интенсивности, создаваемые объектом. Наибольшее применение нашли плоские фильтры из алюминия, вставляемые в прямой пучок на входе диафрагмы. Вставные фильтры изготавливают в виде пластин размером (80-100) х (100-120) мм разной толщины. Обозначение алюминиевого эквивалента выбирается на фланцах пластины.
В диафрагмах аппаратов РУМ-20, РДК 50/6 фильтры вводят в соответствующее гнездо вручную. В других конструкциях диафрагм фильтр может быть введен дистанционно с помощью электродвигателя или электромагнита и соответствующего механизма перемещения, причем иногда, если фильтр не введен, включить высокое напряжение при установка свыше 100 кВ невозможна. Применяют светопрозрачные фильтры с различными эквивалентами по алюминию, устанавливаемых на выходе диафрагмы. В качестве фильтров могут работать некоторые детали диафрагмы и тубусов. Ими могут быть зеркало светового имитатора пучка, входное и выходное предохранительные окна диафрагм.
Растры. К устройствам фильтрации рентгеновского излучения относят растры, которые вводят в прямой пучок для избирательного поглощения рассеянного излучения. Растр представляет собой пластину, составленную из чередующихся прозрачных и мало прозрачных для излучения (обычно свинцовых) ламелей. Плоскости ламелей направлены на определенную точку в пространстве, с которой при использовании растра совмещают фокус излучателя. Первичный пучок излучения с некоторой потерей пропускается растром, а рассеянное объектом и произвольно направленное излучение задерживается малопрозрачными ламелями (рис. 1.13). Способность растра отсеивать или задерживать рассеянное излучение характеризуется отношением высоты малопрозрачных Т ламелей к промежутку между ними t. Другими важными параметрами растра, связанными с отношением, являются число ламелей на 1 см и их толщина. Эффективность растра тем выше, чем больше отношение. Прозрачность его тем больше, чем тоньше малопрозразные ламели и чем меньше толщина растра. Наиболее распространены растры с отношением 6 и 8 при напряжении генерирования излучения до 100 кВ, с отношением 10 и более при напряжении свыше 100 кВ (рис. 1.14). Существуют также ячейковые и перекрестные растры. Растры размещают перед рентгенографической кассетой или другим приемником излучения. В устройства для рентгенографии растрам придают возможность возвратно-поступательно перемещаться при выдержке. В кассетах для переносных или передвижных аппаратов растр монтируют в их передние стенки, и в этом случае он остается неподвижным.
Качество снимка обеспечивается точностью соблюдения характеристик геометрии облучения, определяющих взаимное положение излучателя и приемника излучения. Для системы формирования изображения в рентгеновском штативе можно определить собственный предел разрешения, связанный с точностью соблюдения геометрии облучения. Контраст изображения в этом случае также относится к заданным условиям. Как известно, контраст изображения зависит от энергии излучения (напряжение на рентгеновской трубке) в фильтрации рабочего пучка излучения в тех устройствах штатива, через которые проходит пучок (например, дека стола) толщина этих дополнительных фильтров в конкретном штативе является постоянной.
Толщина дополнительного фильтра, создаваемого теми частями устройств, через которые проходит рабочий пучок излучения, в принципе служит мерой оценки совершенства штатива: чем больше фильтрация, тем «жестче» спектр пучка излучения и тем, следовательно, меньше контраст изображения.
Геометрическая составляющая нерезкости изображения в общем случае рассчитывается по формуле:
Hr = b*E0/(F – E0) (1.9)
Где Hr – геометрическая составляющая нерезкости изображения, в мм;
b – линейный размер фокуса рентгеновской трубки;
E0 – расстояние от плоскости исследования до плоскости пленки.
В конкретных штативных устройствах для снимков величины b и E0 являются заданными.
В этом случае
Hr = K*1/(F-E0) (1.10)
Не трудно видеть, что геометрическая составляющая тем меньше,чем больше фокусное расстояние съемки.
Приведенные оценки справедливы для статического состояния системы формирования рентгеновского изображения и не учитывают влияние движущихся элементов штативных устройств, создающих колебания, вибрацию.удары и другие динамические эффекты, искажающие геометрию облучения в процессе исследования; вследствие этого возникают «расфокусирование» системы и размазывание, снижающие резкость изображения.
Составляющую нерезкости рентгеновского изображения, возникающую под влиянием динамики штативных устройств, принято называть технологической. Ее понимают как величину, учитывающую как конструктивные характеристики движения штативов, так и отклонения от этих характеристик, появляющиеся в процессе эксплуатации аппарата. В отклонениях не учитываются колебания элементов штативов, возникающие при перемещении, например, рентгеновского излучателя, ЭСУ и др., так как эти колебания затухают так быстро, что не более чем через 205 с после приложения силы штатив возвращается в устойчивое положение и система формирования изображения остается неподвижной.
Источником затухающих колебаний при снимках с ЭСУ является воздействие силы, возникающей в момент остановки кассетодержателя в поле снимка. Аналогичная ситуация наблюдается и при рентгенографии на столе снимков, где затухающие колебания возникают в момент запуска отсеивающего растра в рентгеновской решетке.
Затухающие колебания в различных штативных устройствах аппарата существуют или до включения анодного напряжения, как, например, при снимках с ЭСУ, или так что время работы механизмов в устройствах совпадает с длительностью экспозиции, как экспозиции, как это имеет место при томографии, когда под воздействием вибрации элементы томографической системы движутся по искаженной колебаниями траектории.
Причины увеличения технологической составляющей нерезкости рентгеновского изображения довольно обычны. Это неточная регулировка механизмов и зазоров в зацеплениях, люфты, неплотное крепление сменных деталей в системах, ослабление креплений и т.п.
Вторая группа условий, нарушение которых ухудшает качество изображения, - это асимметрия границ поля облучения, которая возникает, если нарушено центрирование рентгеновского излучателя, диафрагм, тубусов.
Возможные отклонения элементов системы формирования изображения от заданной геометрии облучения следует проверять при контроле технического состояния и технического обслуживания рентгеновских штативных устройств.






