Основные превращения в стали

Фазовые превращения, которые совершаются в стали также, как и превращения при кристаллизации обуславливается тем, вследствие изменения внешних факторов (температуры) происходит переход из одного состояния в другое, оказавшееся более устойчивым при данной температуре. Основными в стали являются три структуры - аустенит, мартенсит, перлит. Основные превращения в стали харак­теризуются переходом этих структур из одного в другую.

При термической обработке стали наблюдаются 4 основных превращения..

1. Превращение перлита в аустенит, протекающее выше точки А1, т. е. выше температуры стабильного равновесия А«П. При этих температурах их 3-х основных структур минимальной свободной энергией обладает аустенит.

Fea (С) + Fe2С ® Fe g(С)

2. Превращение аустенита в перлит, протекающее ниже Ас1

Feg (С) ® Fea + Fe2(С)

3. Превращение аустенита в мартенсит

Feg (С) ® Fea(C)

4. Превращение мартенсита в феррито-карбидную смесь

Fea(С) ® Fea + Fe2С

Образование аустенита.

(Первое основное превращение)

Превращение перлита в аустенит в полном соответствии с диаграммой Fе-С может совершится лишь при очень медленном нагреве. При обыч­ных условиях превращение запаздывает и получается перенагрев. Перенагретый выше критической точки перлит с различной скоростью превращается в аустенит. Скорость превращения зависит от температуры. Чем выше температура, тем больше скорость превращения. Теоретически при нагреве с бесконечно малой скоростью луч нагрева пересечет кривые начала и конца превращения, пересекающиеся в бесконечности. Превращений А «П произой­дет согласно диаграмме равновесного состояния. Реально превращение П «А происходит не при одной температуре, а в интервале температур, расположенных тем выше, чем выше нагревает­ся сталь. Окончание процесса превращения характеризуется образовани­ем аустенита и исчезновением перлита. Вновь образовавшийся аусте­нит неоднороден в объеме. В местах, где были пластинки цементита содержание углерода больше, чем в местах, где располагались пластинки феррита. Для получения однородного гомогенного аустенита необходима выдержка при температуре аустенизации для завершения диффузионных процессов, внутри аустенитного зерна. Скорость описан­ных реакций зависит от степени дисперсности цементита и от его формы. Чем меньше частицы цементита, тем быстрее происходит превращение.

2. Рост аустенитного зерна. На первой стадии превращения перли­та в аустенит происходит образование большого количества мелких зерен аустенита. Размеры этих зерен характеризует так называемое начальное зерно аустенита.

Дальнейший нагрев или выдержка обуславливает рост аустенитных зерен. Этот процесс протекает самопроизвольно т.к. идет с уменьшением поверхностной энергии за счет уменьшения суммарной поверхности зерен. Высокая температура лишь обеспечивает достаточную скорость протекания процесса. Различают 2 типа сталей– наследственно мелкозернистые и наследственно крупнозернистые.

1-й характеризуется малой склонностью к росту зерна, 2-й - повышенной склонностью.

В наследственно мелкозернистой (а) стали при переходе через АI сопровождается уменьшением величины зерна. Это зерно не растет при дальнейшем нагреве до 950-1000°С

Рост начинается выше 1000° С. У крупнозернистой стали рост зерен начинается при переходе через критическую точку (б). Таким образом, под наследственной зернистостью нужно понимать склонность аустенитного зерна к росту.

Размер зерна, наблюдаемый в стали после термической обработ­ки называется действенным. Следовательно, различают 3 характерис­тики размера зерна стали:

1. Начальное зерно - размер зерна аустенита в момент окон­чания

превращения П «А

2. Наследственное зерно, определяющее склонность зерна аустенита к

росту.

3. Действительное зерно - размер зерна аустенита в данных конкретных условиях.

Размер первичного зерна аустенита и наследственная зернис­тость оказывает влияние на величину действительного зерна получен­ного после термической обработки. Чем крупнее зерна первичного аустенита и чем больше наследственное зерно, тем более крупное действительное зерно получаемое после всех видов тепловой обработки.

Величина первичного зерна, наследственная крупнозернистость и величина действительного зерна в стали может быть определена микроструктурным анализом. Первичное зерно может быть определено по излому закаленных образцов. Так как разрушение произойдет по границам бывших аустенитных зерен, по виду излома можно судить о размере зерна. При микроструктурном исследовании границы аусте­нитных зерен выявляют замедленным охлаждением (сетка Ф или Ц)

Для определения наследственного зерна, т.е. склонности к росту нагревают сталь до 930° С (конструкционные стали) и определяют по шкале величину вспучившегося действительного зерна. (Это температура, при которой у наследственно крупнозернистой стали происходит рост зер­на).

Величину действительного зерна определяют по микроструктуре термически обработанного образца сравнивая со стандартной шка­лой. На механические свойства стали в термически обработанном состоянии существенное влияние оказывает только величина действи­тельного зерна. Укрупнение величины зерна снижают пластические характеристики особенно ударную вязкость и повышает хладноломкость стали, не оказывая существенного влияния на твердость.

Величина наследственного зерна оказывает существенное влия­ние на технологический процесс горячей обработки, так как в наслед­ственно мелкозернистой стали рост зерна начинается при более вы­соких температурах, то ее можно ковать и прокатывать при более высоких температурах не опасаясь получения крупного зерна, а также проводить закалку при более высокой температуре, что позво­лит получить более высокую прочность при сохранении мелкозернистой структуры.

Наследственная зернистость зависит от химического сос­тава стали и способа производства (метода раскисления). Многие легирующие элементы Ti, W, Zn, V уменьшают склонность зерна аустенита к росту. Сталь раскисления только FeSi и FeAl (КП и ПС) - наследственно крупнозернистая сталь дополнительно раскисленная Al(СП) - мелкозернистая. Алюминий, введенный в жидкую сталь незадолго до разливки по изложницам образует нитриды, располагающиеся при кристаллизации по границам зерен и препятст­вующие их росту.

Распад аустенита.

(второе основное превращение)

Превращение аустенита в перлит заключается в распаде ау­стенита твердого раствора углерода в g железе на феррит (почти чистое железо) и цементит.

Feg (С) ® Fea + Fe2(С)

При температуре равновесия АI это превращение невозможно, т.к. свободные энергии исходного аустенита и конечного перлита равны.

Превращение может начаться лишь при некотором переохлаждении, когда свободная энергия Ф-К смеси (перлита) окажется меньшей, чем аустенита. Чем больше степень переохлаждения, тем быстрее протекает процесс превращения. Так как превращение А ® Ф + П происходит среди фаз, резко отличающихся по составу от исходных, то оно сопро­вождается диффузией, перераспределением углерода.

С понижением температуры и увеличением переохлаждения диффузия замедляется. Таким образом, увеличение переохлаждения действует двояко - ускоряет превращение за счет увеличения разности свобод­ных энергий перлита и аустенита и замедляет его вследствие умень­шения скорости диффузии. Суммарное действие обоих факторов приво­дит к тому, что вначале скорость превращения с увеличением степе­ни переохлаждения возрастает, а затем убывает.

При 727° С и ниже d (2000 С)V =0, т.к. при 7270 С DF=0 при d=D=0. Процесс образования перлита состоит из зарождения кристаллов перлита и их роста. Поэтому, скорость превращения определяется числом образующихся центров ч. ц. и скоростью роста с.к. (при разной степени пе­реохлаждения). Этот процесс, происходящий во времени может быть изобра­жен кинетической кривой превращения, показывающей количество перлита, образовавшегося зависимости от времени, прошедшего с нача­ла превращения. Начальный период характеризуется весьма малой скоростью так называемый инкубационный период. Максимум скорости соот­ветствует примерно 50 % превращения аустенита. Затем скорость пре­вращения уменьшается и превращение заканчивается.

КИНЕТИЧЕСКАЯ КРИВАЯ ПРЕВРАЩЕНИЯ АУСТЕНИТА В ПЕРЛИТ.

При очень малой и значительной степени переохлаж­дения превращение идет медленно, т.к. С.К. и Ч.Ц. малы. При максимальной скорости превращения кривые идут круто вверх, и превращение заканчивается за малый отрезок времени. Изучение превращения А «П можно изобразить серией кривых, изображающих превращение при разных температурах. При высокой температуре (малая степень переохлаждения) превращение развивается медленно и продолжительность инкубационного периода (отрезок от начала коор­динат до точки а) и время превращения (отрезок от начала координат до точки в). При снижении температуры превращения, т.е. увеличении степени переохлаждения продолжительность инкуба­ционного периода и всего превращения сокращается Vmax соответствует tн, дальнейшее снижение температуры замедляет превраще­ние. Возможен другой способ графического изображения. Если на ось ординат нанести отрезки соответствующие началу и концу превра­щения, то получим диаграмму превращения.

Точка а расположена на кривой показывающей начало превращения, в - конец превращения. Кривая начала превращения показывает (в зависимости от степени переохлаждения) время существования переохлажденного аустенита. Мерой устойчивости может служить отрезок от оси ординат до кривой начала превращения. При 500-600° С (t4) отрезок минимальный, т.е. А «П через наиболее короткий промежуток времени, т.к. время превращения сильно разнится от 1-2 сек. до нескольких минут. Диаграмма называется диаграммой изотермического превращения аустенита. Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходил процесс его распада. При высоких температурах и малых степенях переохлаждения получается грубая, хорошо различимая под микроскопом смесь пластинчатого цементита и феррита называемая перлитом.

При более низких температурах и больших степенях переохлажде­ние дисперсность структур увеличивается, и твердость продуктов превращения возрастает. Такой мелкодисперсный перлит называется сорбитом. При еще более низкой температуре на перегибе с диаграммы дисперсность продуктов распада возрастает и образуется тростит. В этой структуре различить отдельные структурные составляющие почти невозможно при наблюдении под световым микроскопом. Хорошо видна структура на электронном микроскопе. Таким образом, перлит, сорбит, тростит - структуры с одинаковой природой (Ф+ЦII), отличающиеся дисперсностью. Перлитные структуры могут быть 2-х видов - пластинчатые и зернистые. Превращения выше и ниже изгиба С-образной кривой отличаются по кинетике превраще­ния и структуре продуктов распада аустенита. Выше изгиба С-образной кривой, т.е. при малых переохлаждениях превращение начинается из небольшого числа центров, и кристаллы перлита растут до столкновения. Ниже перегиба С-кривой возникает игольча­тая структура, образуются иглы - пластины, рост которых ограни­чен и превращение происходит путем роста новых кристаллов. В обоих случаях происходит распад аустенита на Ф-Ц смесь, но при высоких температурах углерод полностью выделяется из раствора, а при низких температурах этот процесс затруднен. Иглы состоят из мельчайших и коротких пластин Ф и Ц. Эта иголь­чатая структура называется бейнит.

К характерным особенностям превращения аустенита ниже перегиба С-образной кривой относится то, что распад аустенита не происхо­дит полностью и в структуре остается исходная фаза называемая остаточным аустенитом. Различное строение продуктов распада вы­ше и ниже перегиба С-образной кривой объясняется следующим. При высоких температурах выше перегиба цементит образуется в мягком аустените и возможно без создания напряжений образования круглых зерен. При низких температурах ниже перегиба С-кривой рост новой фазы про­исходит в напряженно-упругой среде и округлые конгломераты об­разовываться не могут, т.к. это создало бы большие напряже­ния. Поэтому внешняя форма кристаллов приобретает тонкопластинчатую (игольчатую) форму. Рост таких кристаллов не ведет к возни­кновению больших напряжений. Таким образом, протекает изотермический распад аустенита в эвтектоидных сталях. В доэвтектоидных сталях превращение начинается с выпа­дения феррита и обогащения углеродом оставшегося g раствора, в заэвтектоидных с выделения цементита и обеднения твердого раст­вора.

В условиях равновесия распад А ® Ц + Ф происходит в точке S, где содержание углерода 0,8 %. В условиях переохлаждения одновременное выделение Ф и Ц из А возможно лишь при условии пересыщения аустенита обеими фазами, т.е. в реальных условиях состав эвтектоида (перлита) характеризует­ся интервалом концентраций.

Из схемы видно, что в заэвтектоидных сталях квазиэвтектоид может содержать углерода больше, а в до­эвтектоидных сталях меньше, чем 0,8% и эта разница тем больше, чем больше степень переохлаждения и ниже температура превращения. Следовательно, чем ниже температура превращения, тем меньше должно выделиться феррита или цементита перед перлитным превращением. При температуре перегиба С кривой и ниже распад аустенита происходит без выделения избыточных фаз.

Диффузионный перлитный распад без предварительного выделения феррита и цементита происходит в области ЕSG. Левее линии ЕS ему предшествует выделение феррита, правее SG - цементита.

Рассмотрим как происходит распад аустенита при непрерывном охлаждении, когда сталь, нагретая до аустенитного состояния охлаждается с разной скоростью. Линия V1 соответствующая медленному охлаждению пересечет линии диаграммы в точках а и в продукт превращения - перлит. С увеличением скорости превращения кривые V1, V2, V3 пересекают ли­нии диаграммы при более низких температурах (а, в ', а ", в "), образуя более дисперсные структуры. Если охлаждать сталь с очень большей скоростью (V5), то превращение в верхнем интервале температур не успеет произойти и аустенит превратится в мартен­сит (закалка). Для того, чтобы закалить сталь, нужно охладить ее с такой скоростью, чтобы превращение не успело произойти. Минимальная скорость охлаждения необходимая для превращения А® М называется критической скоростью закалки (Vк)

где А1 - температура критической точки

tm - температура min устойчивости аустенита

tm - время min устойчивости аустенита

Vл в 1,5 раза меньше расчетной, т.е.

Эта поправка объясняется тем, что как показали исследования С.С. Штейнберга, что сумма бесконечно малых отрезков времени при непрерывном охлаждении не равна отрезку у изгиба С-образной кривой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: