Сложение систем

Наиболее общая закономерность сложения систем – закон подобия части и целого, или биоголографический закон, согласно которому часть является миниатюрной копией целого, а потому все части одного уровня иерархии систем похожи друг на друга. Примеры: модель атома и солнечной системы; организм, состоящий из многих клеток и одноклеточный, при этом каждая клетка генетически как-то представляет модель целого многоклеточного организма.

Закон подобия части и целого не абсолютен. Электрон не может быть моделью организма, а отдельные гены аналогичны и даже идентичны у очень далеко систематически отстоящих друг от друга видов. Закон подобия части и целого не означает их абсолютной идентичности. Наоборот, еще в античное время была сформулирована аксиома: целое больше суммы его частей, или аксиома эмерджентности: целое всегда имеет особые свойства, отсутствующие у его частей-подсистем и не равно сумме элементов, не объединенных системообразующими связями. Для организма требуется совокупность системной целостности, обмена веществ и других свойств биосистемы.

Очевидно, что никакая система не может сформироваться из абсолютно идентичных элементов. Отсюда вытекает закон необходимого разнообразия. Для каждого типа систем необходимое разнообразие количественно различно и часто строго фиксировано. Нижний предел – не менее двух элементов (белки и нуклеиновые кислоты, «он» и «она» и т. п.), верхний предел – бесконечность.

Жесткие системы имеют более фиксированный (иногда абсолютно) лимит составляющих. При всех колебаниях числа составляющих оно подчиняется действию закона избыточности системных элементов при минимуме числа вариантов организации: многие динамические системы стремятся к относительной избыточности основных своих составляющих при минимуме вариантов организации. Избыточность числа элементов часто служит непременным условием существования системы, ее качественно-количественной саморегуляции и стабилизации надежности.

Фиксированное число разнокачественных элементов возникает, очевидно, под давлением объективных причин. Всякое объединение не случайно, если оно не вызвано антропогенными внешними обстоятельствами. Движущим механизмом служит «выгода» большей надежности при объединении – действие правила конструктивной эмерджентности: надежная система может быть сложена из ненадежных элементов или из подсистем, не способных к индивидуальному существованию. Примеры этого правила: колониальные организмы (например, кораллы) и общественные насекомые (муравьи, пчелы, термиты).

Итоговым обобщением и развитием закономерностей сложения систем служит закон оптимальности: с наибольшей эффективностью любая система функционирует в некоторых характерных для нее пространственно-временных пределах (или: никакая система не может сужаться или расширяться до бесконечности). Размер системы должен соответствовать выполняемым ею функциям. Обычно такой размер называют характерным размером системы. Для того, чтобы рождать живых детенышей и кормить их молоком, самка млекопитающего не может быть ни микроскопической, ни гигантской; чтобы летать, птица не может быть слишком большой и т. п.

Жесткие системы обречены на постепенное разрушение, тем более скорое, чем агрессивнее для них окружающая среда. При этом сначала выходят из строя отдельные части, а затем наступает момент полной деструкции такой системы без возможности самовосстановления. Подобные явления наблюдаются и в тех случаях, когда среда (физическая, историческая и т. д.) не соответствует функционально-структурным особенностям системы. В этом случае происходит вымирание, смена функций и другие аналогичные процессы. При этом один вид никогда индивидуально не исчезает, с ним вместе меняется вся пищевая цепь, сеть и т.д., включая экосистему в целом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: