double arrow

Закономерности адаптации биосистем

Практически все закономерности, характерные для живого, имеют адаптивное значение. В постоянно меняющейся среде жизни каждый вид организмов по-своему адаптирован. Это выражается правилом экологической индивидуальности: каждый вид специфичен по экологическим возможностям адаптации, двух идентичных видов не существует. Оно – прямое следствие и вместе с тем причина генетического разнообразия. По сути дела, и каждая особь эколого-генетически специфична и индивидуальна. Разница лишь в количественных показателях.

Специализированные виды, как правило, приспособлены к среде лучше, чем специализированные внутривидовые формы. Естественно, что приспособленность к одному фактору среды, например, повышенной влажности, не дает организму такой же адаптированности к другим условиям среды (температуре и т. п.). Эта очевидная закономерность сформулирована как закон относительной независимости адаптации: высокая адаптированность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни (наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организмов).

Организмы, живущие в близких условиях существования, вынуждены сталкиваться со сходными ограничениями или возможностями, в ответ на них они вырабатывают близкие функциональные реакции. Например, виды водной среды вынуждены поддерживать определенное осмотическое давление; все организмы приспосабливаются к определенному температурному режиму и так далее. Существует большое число правил адаптации к тем или другим условиям жизни: энергетическое правило поверхностей: отношение продуцируемого особью гомойотермного животного тепла к единице площади поверхности ее тела приблизительно одинаково. Оно колеблется около величины в 1000 ккал/м2/сутки. Относительная теплоотдача у всех организмов растет с их измельчанием, что следует из того, что масса тела пропорциональна кубу, а поверхность лишь квадрату его диаметра (объема). Правило поверхностей перекликается с правилом Бергмана и служит основой для его проявления.

Закономерности системы организмсреда

Взаимоотношения организмов с их средой обитания подчиняются ряду закономерностей, которые могут быть условно классифицированы на две группы: общую и частную. Последняя группа в свою очередь распадается на серию закономерностей, связанных с внешним воздействием, и, наоборот, очерчивающих внутренние реакции организма на эти влияния.

1) Общие законы функционирования системы организмсреда

Наиболее общее обобщение в этой группе закономерностей в наиболее ясной форме сформулировано В. И. Вернадским и получило название закона единства организмсреда: жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов. Связано это с активностью всех биосистем. А поскольку отношения организма и его среды системны, действует принцип экологического соответствия: форма существования организма всегда соответствует условиям его жизни.

Эти условия изменяет и сама биосистема, образуя среду собственного существования. Это свойство биосистем сформулировано в виде закона максимума биогенной энергии (энтропии) В. И. ВернадскогоЭ. С. Бауэра: любая биологическая или биокосная (с участием живого) система, находясь в подвижном (динамическом) равновесии с окружающей ее средой и эволюционно развиваясь, увеличивает свое воздействие на среду. Давление растет до тех пор, пока не будет строго ограничено внешними факторами (надсистемами или другими конкурентными системами того же уровня иерархии), либо не наступит эволюционно-экологическая катастрофа.

Наиболее общее значение имеет закон совокупного (совместного) действия факторов: взаимосвязь экологических факторов и их взаимное усиление и ослабление определяют их воздействие на организм и успешность его жизни. При этом важны не только воздействия извне, но и физиологическое состояние организма Совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наименьшую экологическую валентность – минимальную способность к приспособлению.

Задание: сравните данное высказывание с учением о критических периодах развития. Можно ли это учение применить в данном случае? Ответ поясните, приведите примеры.

В совокупном давлении среды выделяются факторы, которые сильнее всего ограничивают успешность жизни организма. В наиболее общем виде эту закономерность формулирует закон ограничивающих (лимитирующих) факторов, установленный Ф. Блэкманом в 1909 г., и более известный, хотя и позднее опубликованный (1913 г.) закон толерантности В. Шелфорда, к тому же несколько более узко сформулированный. Формулировка закона ограничивающих (лимитирующих) факторов такова: факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют (ограничивают) возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий. Закон толерантности очень близок к названному: лимитирующим фактором процветания организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору.

Выносливость организмов зависит от их возраста и пола. Это значимо в текущей жизни и в процессе эволюции: женский организм более чуток к факторам среды в ходе эволюции вида, чем мужской (а мужской — к индивидуальным факторам воздействия). Эта закономерность известна как правило Геодекяна, или правило меньшей эволюционно-экологической толерантности женского организма.

2) Частные закономерности в системе организмсреда

1 – точка минимума; 2 – точка оптимума; 3 – точка максимума

Рисунок 6.1 – Общая схема действия экологического фактора на живой организм

Несмотря на многообразие влияния экологических факторов, можно выявить общий характер их воздействия на организм. При небольших значениях или при чрезмерном воздействии фактора жизненная активность организма заметно угнетается. Наиболее эффективно действие фактора не при его минимаксных значениях, а при некотором его значении, оптимальном для данного организма. Диапазон действия, или зона толерантности (выносливости) экологического фактора, ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума) данного фактора, при которых возможно существование организма (рисунок 6.1).

Точка на оси абсцисс, которая соответствует наилучшему показателю жизнедеятельности организма, — это точка оптимума. Так как определить оптимальное значение фактора с высокой точностью бывает трудно, говорят о диапазоне значений последнего — о зоне оптимума, или зоне комфорта. Таким образом, три точки (оптимума, минимума и максимума) составляют три кардинальные точки, которые определяют возможные реакции организма на данный фактор. Крайние участки кривой, отражающие состояние угнетения при недостатке или избытке фактора, называют зонами пессимума. Рядом с критическими точками лежат сублетальные величины фактора, а за пределами зоны толерантности — летальные значения фактора, при которых наступает гибель организма.

Условия среды, в которых какой-либо фактор (или совокупность факторов) выходит за пределы зоны комфорта и оказывает угнетающее действие, часто называют экстремальными.

Существование и выносливость организма часто оказываются чувствительными к двум или большему числу факторов окружающей среды. В таких случаях решающее значение будет принадлежать такому фактору или ресурсу, который имеется в минимальном с точки зрения потребностей организма количестве (рисунок 6.2). Эта идея легла в основу т. н. закона минимума, сформулированного немецким химиком Ю. Либихом (1840 г.): выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Так, величина урожая определяется количеством в почве того из элементов питания, потребность растения в котором удовлетворена меньше всего. Урожай будет возрастать пропорционально вносимым дозам до тех пор, пока не окажется в минимуме другое вещество.

Дополнительное правило взаимодействия факторов в законе минимума: организм в определенной мере способен заменить дефицитное вещество или другой действующий фактор жизни функционально близким веществом или фактором. Например, некоторые микроорганизмы могут использовать определенные антибиотики для построения клеточной стенки (что делает их нежизнеспособными), недостаток света может быть компенсирован для растения обилием углекислого газа.

Рисунок 6.2 – «Бочка Либиха» (длина самой короткой доски – лимитирующий фактор)

Важной поправкой и дополнением служит закон неоднозначного (селективного) действия фактора на различные функции организма: любой экологический фактор неодинаково влияет на функции организма, оптимум для одних процессов, например, дыхания, не является оптимум для других, например, пищеварения, и наоборот.

К этой группе примыкает несколько отличное от других правило или закон фазовых реакций («польза — вред»): малые концентрации токсиканта действуют на организм в направлении усиления его функций (их стимулирования), тогда как более высокие концентрации угнетают или даже приводят его к смерти. Эта токсикологическая закономерность справедлива для многих, но не для всех ядовитых веществ и особенно спорна для малых доз радиации. Благоприятное воздействие малых доз вредных экологических факторов называют гормезисом. Радиационное воздействие пороговых, малых и даже запороговых доз пока однозначно не известно. Есть сведения, что пагубно воздействуют на человека даже запороговые дозы радиации, характерные для естественного фона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: