Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

A10 (базовый уровень, время – 2 мин)




Тема: Использование информационных моделей (таблицы, диаграммы, графики).
Перебор вариантов, выбор лучшего по какому-то признаку.

Что нужно знать:

· в принципе, особых дополнительных знаний, кроме здравого смысла и умения перебирать варианты (не пропустив ни одного!) здесь, как правило, не требуется

· полезно знать, что такое граф (это набор вершин и соединяющих их ребер) и как он описывается в виде таблицы, хотя, как правило, все необходимые объяснения даны в формулировке задания

· чаще всего используется взвешенный граф, где с каждым ребром связано некоторое число (вес), оно может обозначать, например, расстояние между городами или стоимость перевозки

· рассмотрим граф (рисунок слева), в котором 5 вершин (A, B, C, D и E); он описывается таблицей, расположенной в центре; в ней, например, число 4 на пересечении строки В и столбца С означает, что, во-первых, есть ребро, соединяющее В и С, и во-вторых, вес этого ребра равен 4; пустая клетка на пересечении строки А и столбца В означает, что ребра из А в В нет

       
 
   
 

  A B C D Е
A      
B      
C    
D        
Е      

· обратите внимание, что граф по заданной таблице (она еще называется весовой матрицей) может быть нарисован по-разному; например, той же таблице соответствует граф, показанный на рисунке справа от нее

· в приведенном примере матрица симметрична относительно главной диагонали; это может означать, например, что стоимости перевозки из В в С и обратно равны (это не всегда так)

· желательно научиться быстро (и правильно) строить граф по весовой матрице и наоборот

Пример задания:

Между четырьмя местными аэропортами: ОКТЯБРЬ, БЕРЕГ, КРАСНЫЙ и СОСНОВО, ежедневно выполняются авиарейсы. Приведён фрагмент расписания перелётов между ними:

Аэропорт вылета Аэропорт прилета Время вылета Время прилета

СОСНОВО КРАСНЫЙ 06:20 08:35

КРАСНЫЙ ОКТЯБРЬ 10:25 12:35

ОКТЯБРЬ КРАСНЫЙ 11:45 13:30

БЕРЕГ СОСНОВО 12:15 14:25

СОСНОВО ОКТЯБРЬ 12:45 16:35

КРАСНЫЙ СОСНОВО 13:15 15:40

ОКТЯБРЬ СОСНОВО 13:40 17:25

ОКТЯБРЬ БЕРЕГ 15:30 17:15

СОСНОВО БЕРЕГ 17:35 19:30

БЕРЕГ ОКТЯБРЬ 19:40 21:55




Путешественник оказался в аэропорту ОКТЯБРЬ в полночь (0:00). Определите самое раннее время, когда он может попасть в аэропорт СОСНОВО.

1) 15:40 2) 16:35 3)17:15 4) 17:25

Решение:

1) сначала заметим, что есть прямой рейс из аэропорта ОКТЯБРЬ в СОСНОВО с прибытием в 17:25:

ОКТЯБРЬ СОСНОВО 13:40 17:25

2) посмотрим, сможет ли путешественник оказаться в СОСНОВО раньше этого времени, если полетит через другой аэропорт, с пересадкой

3) можно лететь, через КРАСНЫЙ, но, как следует из расписания,

ОКТЯБРЬ КРАСНЫЙ 11:45 13:30

КРАСНЫЙ СОСНОВО 13:15 15:40

путешественник не успеет на рейс КРАСНЫЙ – СОСНОВО, который улетает в 13:15, то есть на 15 минут раньше, чем в КРАСНЫЙ прилетает самолет ОКТЯБРЬ – КРАСНЫЙ

4) можно лететь через БЕРЕГ,

БЕРЕГ СОСНОВО 12:15 14:25

ОКТЯБРЬ БЕРЕГ 15:30 17:15

но рейс БЕРЕГ – СОСНОВО вылетает даже раньше, чем рейс ОКТЯБРЬ – БЕРЕГ, то есть, пересадка не получится

5) поскольку даже перелеты с одной пересадкой не стыкуются по времени, проверять варианты с двумя пересадками в данной задаче бессмысленно (хотя в других задачах они теоретически могут дать правильное решение)

6) таким образом, правильный ответ – 4 (прямой рейс).

Возможные ловушки и проблемы: · можно не заметить, что путешественник не успеет на пересадку в КРАСНОМ (неверный ответ 15:40) · можно перепутать аэропорты вылета и прилета (неверный ответ 16:35)

Еще пример задания:

Грунтовая дорога проходит последовательно через населенные пункты А, B, С и D. При этом длина дороги между А и В равна 80 км, между В и С – 50 км, и между С и D – 10 км. Между А и С построили новое асфальтовое шоссе длиной 40 км. Оцените минимально возможное время движения велосипедиста из пункта А в пункт В, если его скорость по грунтовой дороге – 20 км/час, по шоссе – 40 км/час.



1) 1 час 2) 1,5 часа 3)3,5 часа 4) 4 часа

Решение:

1) нарисуем схему дорог, обозначив данные в виде дроби (расстояние в числителе, скорость движения по дороге – в знаменателе):

2) разделив числитель на знаменатель, получим время движения по каждой дороге

3) ехать из А в B можно

· напрямую, это займет 4 часа, или …

· через пункт C, это займет 1 час по шоссе (из А в С) и 2,5 часа по грунтовой дороге
(из В в С), всего 1 + 2,5 = 3,5 часа

4) таким образом, правильный ответ – 3.

Возможные ловушки и проблемы: · можно не заметить, что требуется найти минимальное время поездки именно в В, а не в С (неверный ответ 1 час) · можно ограничиться рассмотрением только прямого пути из А в В и таким образом получить неверный ответ 4 часа · можно неправильно нарисовать схему

Еще пример задания:

Таблица стоимости перевозок устроена следующим образом: числа, стоящие на пересечениях строк и столбцов таблиц, означают стоимость проезда между соответствующими соседними станциями. Если пересечение строки и столбца пусто, то станции не являются соседними. Укажите таблицу, для которой выполняется условие: «Минимальная стоимость проезда из А в B не больше 6». Стоимость проезда по маршруту складывается из стоимостей проезда между соответствующими соседними станциями.

1) 2) 3) 4)
  A B C D Е
A      
B      
C    
D        
Е      
  A B C D Е
A    
B        
C    
D        
Е      
  A B C D Е
A    
B      
C    
D        
Е    
  A B C D Е
A        
B      
C    
D      
Е      

Решение (вариант 1):

1) нужно рассматривать все маршруты из А в В, как напрямую, так и через другие станции

2) рассмотрим таблицу 1:

· из верхней строки таблицы следует, что из А в В напрямую везти нельзя, только через C (стоимость перевозки А-С равна 3) или через D (стоимость перевозки из А в D равна 1)

  A B C D Е
A      

· предположим, что мы повезли через C; тогда из третьей строки видим, что из C можно ехать в В, и стоимость равна 4

  A B C D Е
C    

· таким образом общая стоимость перевозки из А через С в В равна 3 + 4 = 7

· кроме того, из С можно ехать не сразу в В, а сначала в Е:

  A B C D Е
C    

а затем из Е – в В (стоимость также 2),

  A B C D Е
Е      

так что общая стоимость этого маршрута равна 3 +2 + 4 = 7

· теперь предположим, что мы поехали из А в D (стоимость 1); из четвертой строки таблицы видим, что из D можно ехать только обратно в А, поэтому этим путем в В никак не попасть:

  A B C D Е
D        

· таким образом, для первой таблицы минимальная стоимость перевозки между А и В равна 7; заданное условие «не больше 6» не выполняется

3) аналогично рассмотрим вторую схему; возможные маршруты из А в В:

· , стоимость 7

· , стоимость 7

· таким образом, минимальная стоимость 7, условие не выполняется

4) для третьей таблицы:

· , стоимость 7

· , стоимость 6

· , стоимость 7

· таким образом, минимальная стоимость 6, условие выполняется

5) для четвертой:

· , стоимость 9

· , стоимость 8

· минимальная стоимость 8, условие не выполняется

6) условие «не больше 6» выполняется только для таблицы 3

7) таким образом, правильный ответ – 3.

Возможные ловушки и проблемы: · метод ненагляден, легко запутаться и пропустить решение с минимальной стоимостью

Решение (вариант 2, с рисованием схемы):

1) для каждой таблицы нарисуем соответствующую ей схему дорог, обозначив стоимость перевозки рядом с линиями, соединяющими соседние станции:

1) 2) 3) 4)
  A B C D Е
A      
B      
C    
D        
Е      
  A B C D Е
A    
B        
C    
D        
Е      
  A B C D Е
A    
B      
C    
D        
Е    
  A B C D Е
A        
B      
C    
D      
Е      

2) теперь по схемам определяем кратчайшие маршруты для каждой таблицы:

1: или , стоимость 7

2: или , стоимость 7

3: , стоимость 6

4: , стоимость 8

8) условие «не больше 6» выполняется только для таблицы 3

9) таким образом, правильный ответ – 3.

Возможные ловушки и проблемы: · нужно внимательно строить схемы по таблицам, этот дополнительный переход (от табличных моделей к графическим) повышает наглядность, но добавляет еще одну возможность для ошибки · наглядность схемы зависит от того, как удачно вы выберете расположение ее узлов; один из подходов – сначала расставить все узлы равномерно на окружности, нарисовать все связи и посмотреть, как можно расположить узлы более удобно · по невнимательности можно пропустить решение с минимальной стоимостью

Задачи для тренировки[1]:

  A B C D
A    
B  
C      
D    

1) В таблице приведена стоимость перевозок между соседними железнодорожными станциями. Укажите схему, соответствующую таблице.

1) 2) 3) 4)

2) В таблицах приведена протяженность автомагистралей между соседними населенными пунктами. Если пересечение строки и столбца пусто, то соответствующие населенные пун­кты не соединены автомагистралями. Укажите номер таблицы, для которой выполняется условие «Максимальная протяженность маршрута от пункта А до пункта С не больше 5». Протяженность маршрута складывается из протяженности автомагистралей между соответствующими соседними населенными пунктами. При этом любой населенный пункт должен встречаться на маршруте не более одного раза.

1) 2) 3) 4)
  A B C D
A    
B  
C    
D  
  A B C D
A    
B  
C  
D    
  A B C D
A  
B  
C    
D    
  A B C D
A  
B      
C  
D    

3) В таблице приведена стоимость перевозки грузов между соседними станциями. Если пересечение строки и столбца пусто, то соответствующие станции не являются соседними. Укажите таблицу, для которой выполняется условие «Минимальная стоимость перевозки грузов от пункта А до пункта В не больше 3».

1) 2) 3) 4)
  A B C D Е
A        
B      
C      
D      
Е        
  A B C D Е
A      
B      
C      
D        
Е        
  A B C D Е
A    
B      
C      
D      
Е        
  A B C D Е
A    
B      
C      
D        
Е      

  A B C D
A    
B    
C  
D  

4) В таблице приведена стоимость перевозки пассажиров между соседними населенными пунктами. Укажите схему, соответствующую.

1) 2) 3) 4)

5) В таблицах приведена стоимость перевозки грузов между соседними станциями. Если пересечение строки и столбца пусто, то соответствующие станции не являются соседними. Укажите номер таблицы, для которой выполняется условие «Максимальная стоимость перевозки грузов от пункта В до пункта D не больше 5».

1) 2) 3) 4)
  A B C D
A    
B  
C    
D  
  A B C D
A  
B    
C  
D    
  A B C D
A  
B  
C    
D    
  A B C D
A  
B    
C  
D    
  A B C D
A    
B  
C    
D  

6) В таблице приведена стоимость перевозки пассажиров между соседними населенными пунктами. Укажите схему, соответствующую таблице.

1) 2) 3) 4)

7) В таблицах приведена протяженность автомагистралей между соседними населенными пунктами. Если пересечение строки и столбца пусто, то соответствующие населенные пункты не являются соседними. Укажите номер таблицы, для которой выполняется условие «Максимальная протяженность маршрута от пункта А до пункта С не больше 6». Протяженность маршрута складывается из протяженности автомагистралей между соответствующими соседними населенными пунктами. При этом через любой насеченный пункт маршрут должен проходить не более одного раза.

1) 2) 3) 4)
  A B C D
A    
B  
C    
D  
  A B C D
A    
B  
C  
D    
  A B C D
A  
B  
C    
D    
  A B C D
A  
B    
C  
D    

[1] Источники заданий:

1. Демонстрационные варианты ЕГЭ 2004-2009 гг.

2. Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.





Дата добавления: 2015-05-10; просмотров: 837; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома - страшная бессонница, которая потом кажется страшным сном. 9026 - | 7291 - или читать все...

Читайте также:

 

3.234.208.66 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.011 сек.