Вывод 1. Непротиворечивость всякой системы аксиом Т сводится к существованию хотя бы одной априорно не противоречивой реализации

Непротиворечивость всякой системы аксиом Т сводится к существованию хотя бы одной априорно не противоречивой реализации.

В качестве примера обратимся к трехмерной евклидовой геометрии. Так как одной из ее реализаций является арифметическая модель R3 (координатная модель), то евклидова геометрия не противоречива, если непротиворечива арифметика действительных чисел. Таким образом, вопрос о непротиворечивости евклидовой геометрии сводится к вопросу о непротиворечивости арифметики действительных чисел.

Если в качестве реализации евклидовой геометрии рассматривать окружающий нас мир, то непротиворечивость этой геометрии будет сведена к опытной проверке. Однако расширение границ опыта в конце ХІХ, начале ХХ столетия привело к открытию неевклидовых геометрий в мире электромагнитных явлений, в мире гравитации. Так возникла специальная теория относительности, которая построена на законах неевклидовой геометрии, связанной с геометрией Лобачевского.

В качестве второго примера рассмотрим планиметрию Лобачевского. Она имеет реализацию Пуанкаре L2, см. §5. В свою очередь L2 имеет арифметическую модель: {(x,y); y>0} –"точки", {(x-a)2+y2=k2,y>0} – "прямые", и так далее. Следовательно, вопрос о непротиворечивости планиметрии Лобачевского сводится, как и в случае евклидовой геометрии, к непротиворечивости арифметики.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: