Сверхизвержения и жизнь во Вселенной

Шансы обнаружения подходящего для коммуникации разума в Галактике часто представляются как комбинация релевантных факторов, называемая уравнением Дрейка, которое может быть записано как:

N = R*fpnefififcL (10.1)

Где N – это число цивилизаций, способных к коммуникации в Галактике, R* – это средняя в течение времени ее существования частота формирования звёзд в Галактике, fp – доля звёзд с планетарными системами; ne – среднее число планет среди таких систем, которые пригодны для жизни, fj – доля тех планет, на которых возникла жизнь, fi – доля планет, на которых развилась разумная жизнь, fc – это доля планет, на которых разумная жизнь достигла коммуникативной фазы и L – означает среднее время существования такой технологической цивилизации. (Sagan, 1973).

Хотя уравнение Дрейка полезно для организации разных факторов, которые считаются важными для возникновения внеземного интеллекта, реальная оценка величин, входящих в уравнение, – трудна. Только R* хорошо известно и составляет 10 звёзд в год. Оценки N широко разнятся от 0 до более чем 108 цивилизаций. (Sagan, 1973).

Недавно было доказано, что fc and L ограничены в частности, частотой кометных и астероидных столкновений, которые могут оказаться катастрофическими для технологической цивилизации (Sagan and Ostro, 1994; Chyba, 1997). Современная человеческая цивилизация, в значительной степени зависящая от ежегодных урожаев, уязвима к «импактной зиме», которая может возникнуть благодаря выброшенной в стратосферу пыли при падении астероидов более 1 км. в диаметре (Chapman and Morrison, 1994; Toon et al, 1997). Такой импакт высвободит примерно 1O5-1O6 Mt тротилового эквивалента энергии, создаст кратер 20-40 км диаметром и создаст глобальное облако массой 1000 МТ субмикронной пыли (Toon et al., 1997). Covey et al. (1990) провели 3-D моделирование климата для глобального пылевого облака, содержащего субмикронные частицы с массой, соответствующей массе облака, которое создаст импакт с силой 6х105 МТ. В этой модели глобальные температуры падают примерно на 8 С в течение первых нескольких недель. Chapman and Morrison (1994) оценили, что импакт такой силы убьёт более чем 1.5 миллиарда людей за счёт прямых и косвенных эффектов. Таким образом, цивилизация должна успевать развить технологию и науку, необходимую для обнаружения и отражения угрожающих астероидов и комет на временных масштабах более коротких, чем типичные промежутки времени между катастрофическими событиями.

Недавний рост осознания импактной угрозы для цивилизации привёл к исследованию возможностей обнаружения, отклонения и разрушения астероидов и комет, которые угрожают Земле (e.g., Gehrels, 1994; Remo, 1997). Технологии планетарной защиты были признаны сущностно важными для долговременного выживания человеческой цивилизации на Земле.

Жёсткие климатические и экологические эффекты, предсказываемые для взрывных сверхизвержений, поставили вопрос об их последствиях для цивилизации на Земле и на других землеподобных планетах, которые могут иметь разумную жизнь. (Rampino, 2002; Sparks et al., 2005). Chapman и Morrison (1994) предположили, что глобальные климатические эффекты сверхизвержений вроде Тобы могут быть эквивалентны эффектам от падения астероида диаметром в 1 км. Высокодисперсная вулканическая пыль и аэрозоли серной кислоты имеют оптический свойства, похожие на свойства субмикронной пыли, создаваемой импактами (Toon et al., 1997), и эффекты в отношении атмосферной прозрачности будут подобными. Вулканические аэрозоли, однако, имеют большее время выпадения, порядка нескольких лет (Bekki et al., 1996), в сравнении с несколькими месяцами для мелкодисперсной пыли, так что мощное извержение может иметь более длительные эффекты на глобальный климат, чем импакт, производящий равное количество выбросов в атмосферу.

Оценка частоты больших вулканических извержений, которые могут вызвать условия «вулканической зимы», предполагают, что они происходят в среднем раз в 50 000 лет. Это по крайней мере в два раза чаще, чем столкновения с кометами и астероидами, которые могут вызвать охлаждения климата сопоставимой силы (Rampino, 2002). Более того, предсказание или предотвращение вулканической климатической катастрофы может быть гораздо более трудным, чем обнаружение и отклонение астероидов и комет. Эти соображения означают, что вулканические суперизвержения представляют реальную угрозу для цивилизации, и необходимы серьёзные усилия для предсказания и предотвращения вулканических климатических катастроф. (Rampino, 2002; Sparks et al. 2005).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: