Виды конденсаторов

Конденсаторы постоянные – ёмкость не меняется (только по истечению срока службы). Слюдяные выпускаются с обкладками из фольги.

Керамические – пластинки, диски или трубки из керамики с нанесёнными на них электродами из металла. Для защиты покрываются эмалями, или заключаются в спецкорпуса, применяются в качестве контурных, разделительных, блокировочных и др.

Стеклянные – монолитные спечённые блоки из чередующихся слоёв стеклянной плёнки и Al фольги. Корпус изготавливается из такого же стекла.

Стеклокерамические – те же стеклянные, но диэлектрик – стекло с добавками из такого же стекла.

Стеклоэмалевые – диэлектриком служит стекловидная эмаль, а обкладками – слои серебра.

Металлобумажные – диэлектрик (лакированная конденсаторная бумага), обкладки – тонкие слои металла (меньше микрометра) нанесенные на бумагу с одной стороны. Корпус цилиндрический Al, концы герметизированы эпоксидной смалой (ВЧ пленочные).

Плёночные и металлоплёночные – диэлектрик (плёнка из пластмассы, полистирола, фторопласта и др.) и обкладка (металлическая фольга или тонкий слой метала, нанесенного на плёнку).

Электрические и оксидно– полупроводниковые: диэлектрик – оксидный слой на металле, являющийся одной из обкладок (анодом). Вторая обкладка (катод) – электролит или слой полупроводника, нанесенный непосредственно на оксидный слой. Аноды изготавливаются из Al, танталовый или ниобиевой фольги. Эти конденсаторы используются лишь в целях постоянного или пульсирующего тока, т.к. проводимость зависит от полярности приложенного напряжения.

Используются в основном в фильтрах выпрямительных устройств, в цепях звуковых частот, усилителях звуковых частот.

Герметичный слюдяной конденсатор в металлостеклянном корпусе типа <<СГМ>> для навесного монтажа.

По виду диэелектрика различают:

*конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме);

*конденсаторы с газообразным диэлектриком;

*конденсаторы с жидким диэлектриком;

*конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеколоплёночные) слюдяные, керамические, тонкослойные, из неорганических плёнок;

*конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированые – бумажноплёночные, тонкослоенные из органических синтетических плёнок;

* электролитические и оксидно – полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металическом аноде. Вторая обкладка (катод) это или электролит (в электролетических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсаторв, из алюминевой, танталовой фольги или спечёного порошка.

* твёрдотельные конденсаторы – вместо традиционного жидкого электролита используеться специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ – 50000 часов при температуре 85°С, слабо зависит от температуры. Не взрываются.

Современные конденсаторы, разрушаются без взрыва благодаря специальной разрывающейся конструкции верхней крышки. Разрушение возможно из–за нарушения режима эксплуатации или старения.

Конденсаторы с разорваной крышкой практически неработоспособны и требуют замены, а если она просто вздувшаяся, но ещё не разорвана, то, скорее всего, скоро он выйдит из строя или изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из–за химических особеностей взаимодействия электролита с диэлектириком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из–за химического разрушения диэлектрика с последующим увеличением тока, вскипанием э лектролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов – довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения(актуально для импульсных устройств). В современных компютерах перегрев конденсаторов – также очень частая причина выхода их из строя, когда они стоят рядом с источниками повышеного тепловыделения (радиаторы охлождения).

Для уменьшения повреждений других и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы Х, К или Е на торце, иногда на больших конденсаторах она прикрыта пластиком).

При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа и иногда даже жидкости, и давление спадает без взрыва и осколков.

Старые электролитические конденсаторы выпускались в герметичном корпусе и не имели никаких защит от взрыва. Взрывная сила частей корпуса может быть достаточно большой и травмировать человека.

В отличие от электролитических, взрывоопасность оксиднополупроводниковых (танталовые) конденсаторов связана с тем, что такой конденсатор фактически представляет собой взрывчтую смесь: в качестве горючего служит тантал, а в качестве окислителя – двуокись марганца, и оба этих компонента в конструкции конденсатора перемешаны в виде тонкого порошка. При пробое конденсатора или при его случайной переплюсовке, выделившееся при протекании тока тепло иницирует реакцию между даными компонентами, протекающую в виде сильной вспышки с хлопком, что сопровождается разбрасыванием искр и осколков корпуса. Сила такого взрыва довольно велика, особенно у крупных конденсаторов, и способна повредить не только соседние радиоэлементы, но и плату. При тесном расположении нескольких конденсаторов возможен прожог корпусов соседних конденсаторов, что проводит к одновременному взрыву всей группы.

Кроме того, коденсаторы различаются по возможности изменениясвоей ёмкости:

* постоянные конденсаторы – основной класс конденсаторов не меняющие своей ёмкости (кроме как втечение срока службы);

* переменные конденсаторы – коденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением и температурой. Применяются, например, в радиоприёмниках для перестройки частоты резонансного контакта;

* подстроечные конденсаторы – конденсаторы, ёмкости которых изменяется при разовой переодической регулировки и не изменяются в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначания можно условно разделять конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общегоназначения используются практически в большенстве видов и классов аппаратур. Традиционно к ним относят наиболлее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все осталные кондесаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходима способность работать с сигналами меняющейся полярности, хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшые габаритные размеры и низкая стоимость. Там же, где эти требования пересекаются, они практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов нишу устройств малой емкости.

Алюминиевые – с радиальными выводами и для поверхностного монтажа. Алюминиевые электролитические конденсаторы обладают высокой ёмкостью, в пересчёте на единицу, низкой стоимостью и доступностью. Они широко применяются в импульсных блоках питания в качестве выходных фильтров с частотами до 150кГц. Однако рабочая частота в DC-DC преобразователях процессоров делает эти кондесаторы неподходящими. Паразитный ЭДС очень высок в диапазоне частот от 150кГц и очень сильно зависит от температуры, по сравнению с конденсаторами других типов. Время жизни зависит от температуры, а потёки могут повредить контакты расположенные под конденсатором.

Танталовые конденсаторы с покрытием диоксидом марганца (МnO2). Танталовые конденсаторы имеют лучшие характеристики, чем алюминиевые, за счёт использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойсвеннo “высыхание” алюминиевых конденсаторов. Также они имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Термостабильность: в температурном диапазоне от – 55°С до +125°С ёмкость изменяется примерно на + 15% до –15%. Токи утечки у них примерно такие же, как у алюминиевых тех же номиналов. Недостатком танталовых конденсаторов является относительно большое уменьшение ёмкости с увеличением частоты и повышенная чувствительность к переплюсовке и перегрузкам по напряжению, из-за которой рекомендуется использование с двойным запасом по рабочему напряжению, также как для обеспечения устойчивой работоспособности при температурах более 85°С. Существует вероятность закорачивания при очень больших токах заряда при включении, сопровождаемого ярко – белой вспышкой и выделением дыма.

Танталовые конденсаторы с полимерным покрытием, предназначенные для поверхностного монтажа, сочетают в себе высокую ёмкость танталовых конденсаторов с высокой удельной проводимостью современных полимерных материалов.

Полимерные алюминиевые конденсаторы обладают хорошими характеристиками на частотах работы конвертера питания. Они имеют хорошие характеристики выброса напряжения и могут использоваться при документированном напряжении.

Как усовершенствование технологии тантала появились ниобиевыеконденсаторы. При сопоставимых условиях они имеют несколько больший ресурс. Например при температуре 85°С алюминиевые конденсаторы имеют ресурс от 8 до 25 тысяч часов работы, танталовые – 100 тысяч часов, а ниобиевые – от 200 до 500 тысяч часов (год непрерывной работы – примерно 8200 часов).На старых (80486, Pentium I) платах бывает изобилие ниобиевых конденсаторов, некоторые неполярные. Ниобиевые иногда оранжевые, иногда синие “капли”, но с выводами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: