Вес тела, движущегося ускоренно вниз, вверх

(вниз)

Невесомость – исчезновение веса при движении опоры с ускорением свободного падения

Перегрузка – увеличение веса тела, вызванное ускорением движения опоры

Космическая скорость (первая v 1, вторая v 2, третья v 3 и четвёртая v 4) — это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет:

· v 1 (круговая скорость) — стать спутником небесного тела (то есть вращаться по круговой орбите вокруг НТ на нулевой или пренебрежимо малой высоте относительно поверхности);

· v 2 (параболическая скорость, скорость убегания) — преодолеть гравитационное притяжение небесного тела и уйти на бесконечность;

· v 3 — покинуть звёздную систему, преодолев притяжение звезды;

· v 4 — покинуть галактику.

5. упругие силы

Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими.

Если взять в руки пластилиновый брусок и сжать его, то пластилин так и останется деформированным после прекращения действия силы. Такие деформации называют неупругой (пластическими).

Предел упругости — максимальная величина механического напряжения, при которой деформация данного материала остаётся упругой, то есть полностью исчезает после снятия нагрузки.

Преде́л про́чности — механическое напряжение , выше которого происходит разрушение материала. Согласно ГОСТу 1497-84 более корректным термином является «Временное сопротивление разрушению», то есть напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от того представления, что материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие по величине, чем временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), разрушение материала (разделение образца на несколько частей) произойдёт через какой-то конечный промежуток времени, возможно, что и практически сразу.

Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

6. Сила трения

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее.

Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

Различают сухое и жидкое (или вязкое) трение.

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

Коэффициент трения устанавливает пропорциональность между силой трения и силой нормального давления, прижимающей тело к опоре. Коэффициент трения является совокупной характеристикой пары материалов которые соприкасаются и не зависит от площади соприкосновения тел.

Формула стокса

7. работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы[1].

Мо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергиисистемы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени[1].

Центр масс тела

8.

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторнаяфизическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению) на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Моме́нт ине́рции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение[1].

Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением.

Основные кинематические характеристики вращательного движения тела — его угловая скорость () и угловое ускорение.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: