Оптимизация материальных затрат и прибыли на предприятии при помощи симплекс – метода

Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие в некотором смысле при ограничениях, налагаемых на природные, экономические и технологические возможности. В связи с этим возникла необходимость применять для анализа и синтеза экономических ситуаций и систем математические методы и современную вычислительную технику. Такие методы объединяются под общим названием — математическое программирование.

Математическое программирование — область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т. е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных.

Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности. Экономические возможности формализуются в виде системы ограничений. Все это составляет математическую модель. Математическая модель задачи — это отражение оригинала в виде функций, уравнений, неравенств, цифр и т. д. Модель задачи математического программирования включает:

1) совокупность неизвестных величин, действуя на которые, систему можно совершенствовать. Их называют планом задачи (вектором управления, решением, управлением, стратегией, поведением и др.);

2) целевую функцию (функцию цели, показатель эффективности, критерий оптимальности, функционал задачи и др.). Целевая функция позволяет выбирать наилучший вариант - из множества возможных. Наилучший вариант доставляет целевой функции экстремальное значение. Это может быть прибыль, объем выпуска или реализации, затраты производства, издержки обращения, уровень обслуживания или дефицитности, число комплектов, отходы и т. д..

Эти условия следуют из ограниченности ресурсов, которыми располагает общество в любой момент времени, из необходимости удовлетворения насущных потребностей, из условий производственных и технологических процессов. Ограниченными являются не только материальные, финансовые и трудовые ресурсы. Таковыми могут быть возможности технического, технологического и вообще научного потенциала. Нередко потребности превышают возможности их удовлетворения. Математически ограничения выражаются в виде уравнений и неравенств. Их совокупность образует область допустимых решений (область экономических возможностей). План, удовлетворяющий системе ограничений задачи, называется допустимым. Допустимый план, доставляющий функции цели экстремальное значение, называется оптимальным. Оптимальное решение, вообще говоря, не обязательно единственно, возможны случаи, когда оно не существует, имеется конечное или бесчисленное множество оптимальных решений.

Один из разделов математического программирования - линейным программированием. Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач.

Линейное программирование — раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений.

Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функции во внутренней точке области допустимых значений. Отсюда — необходимость разработки новых методов.

Симплексный метод решение ЗЛП

Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП состоит

1) умение находить начальный опорный план;

2) наличие признака оптимальности опорного плана;

3) умение переходить к нехудшему опорному плану.

Пусть ЗЛП представлена системой ограничений в каноническом виде:

Говорят, что ограничение ЗЛП имеет предпочтительный вид, если при неотрицательной правой части левая часть ограничений содержит переменную, входящую с коэффициентом, равным единице, а в остальные ограничения равенства - с коэффициентом, равным нулю.

Пусть система ограничений имеет вид

Сведем задачу к каноническому виду. Для этого прибавим к левым частям неравенств дополнительные переменные . Получим систему, эквивалентную исходной:

которая имеет предпочтительный вид

В целевую функцию дополнительные переменные вводятся с коэффициентами, равными нулю

Пусть далее система ограничений имеет вид

Сведём её к эквивалентной вычитанием дополнительных переменных из левых частей неравенств системы. Получим систему

Однако теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные входят в левую часть (при ) с коэффициентами, равными –1. Поэтому, вообще говоря, базисный план не является допустимым. В этом случае вводится так называемый искусственный базис. К левым частям ограничений-равенств, не имеющих предпочтительного вида, добавляют искусственные переменные . В целевую функцию переменные , вводят с коэффициентом М в случае решения задачи на минимум и с коэффициентом - М для задачи на максимум, где М - большое положительное число. Полученная задача называется М-задачей, соответствующей исходной. Она всегда имеет предпочтительный вид.

Пусть исходная ЗЛП имеет вид

(2.16.4.5)

(4.6)

(4.7)

причём ни одно из ограничений не имеет предпочтительной переменной. М-задача запишется так:

(4.8)

(4.9)

, , , (4.10)

Задача (4.8) - (4.10) имеет предпочтительный план. Её начальный опорный план имеет вид

Если некоторые из уравнений (4.6) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.

Теорема. Если в оптимальном плане

(4.11)

М-задачи (4.8) - (4.10) все искусственные переменные , , то план является оптимальным планом исходной задачи (4.5) - (4.7).

Для того чтобы решить задачу с ограничениями, не имеющими предпочтительного вида, вводят искусственный базис и решают расширенную М - задачу, которая имеет начальный опорный план

Решение исходной задачи симплексным методом путем введения искусственных переменных называется симплексным методом с искусственным базисом.

Если в результате применения симплексного метода к расширенной задаче получен оптимальный план, в котором все искусственные переменные ,, то его первые n компоненты дают оптимальный план исходной задачи.

Теорема. Если в оптимальном плане М-задачи хотя бы одна из искусственных переменных отлична от нуля, то исходная задача не имеет допустимых планов, т. е. ее условия несовместны.

Признаки оптимальности.

Теорема. Пусть исходная задача решается на максимум. Если для некоторого опорного плана все оценки , неотрицательны, то такой план оптимален.

Теорема. Если исходная задача решается на минимум и для некоторого опорного плана все оценки , неположительны, то такой план оптимален.

Рассмотрим с помощью линейного программирования оптимизацию материальных затрат на производство одного из видов продукции нашего предприятия. Предприятие имеет запасы 4-х видов ресурсов (материал 1, материал 2, материал 3, финансы), с которых производится 2 вида продуктов (продукт 1 и продукт 2). Известны: нормы расходов ресурсов на производство единицы продукции; запасы ресурсов; цены продуктов; спрос изделия. Найдем с помощью задачи оптимизации оптимальный план производства, при котором доход от реализации произведенной продукции, при заданных нормах расхода материалов, должен быть максимальный.

Решение задачи оптимизации представлено в Приложении н.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: